
 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 1 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

ONEM2M

TECHNICAL SPECIFICATION
Document Number TS-0012-V2.0.0

Document Name: Base Ontology

Date: 2016-August-30

Abstract: oneM2M's base ontology constitutes a basis framework for specifying the

semantics of data that are handled in oneM2M. Sub-classes of some of its

concepts are expected to be defined by other bodies in order to enable

semantic interworking. In particular interworking with non-oneM2M

systems (e.g. Area Networks and their devices) should be facilitated.

Template Version:23 February 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no

liability for any use of this Specification.

The present document has not been subject to any approval process by the oneM2M Partners Type 1.

Published oneM2M specifications and reports for implementation should be obtained via the oneM2M

Partners' Publications Offices.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 2 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the

need for a common M2M Service Layer that can be readily embedded within various

hardware and software, and relied upon to connect the myriad of devices in the field with

M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.

The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the

appropriate degree of experience to understand and interpret its contents in accordance with

generally accepted engineering or other professional standards and applicable regulations.

No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS

TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE,

GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO

REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR

FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF

INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE

LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY

THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN

NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER

INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES

ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN

THIS DOCUMENT IS AT THE RISK OF THE USER.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 3 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Contents

1 Scope .. 6

2 References .. 6
2.1 Normative references ... 6
2.2 Informative references ... 6

3 Definitions and abbreviations ... 7
3.1 Definitions ... 7
3.2 Abbreviations ... 7

4 Conventions .. 7

5 General information on the oneM2M Base Ontology (informative) .. 8
5.1 Motivation and intended use of the ontology ... 8
5.1.1 Why using ontologies in oneM2M? ... 8
5.1.1.1 Introduction to ontologies ... 8
5.1.1.2 The purpose of the oneM2M Base Ontology .. 9
5.1.1.2.0 Introduction ... 9
5.1.1.2.1 Syntactic interoperability .. 9
5.1.1.2.2 Semantic interoperability .. 9
5.1.2 How are the Base Ontology and external ontologies used? ... 10
5.1.2.1 Overview .. 10
5.1.2.2 Introduction to usage of classes, properties and restrictions ... 10
5.1.2.3 Methods for jointly using the Base Ontology and external ontologies ... 10
5.2 Insights into the Base Ontology ... 11
5.2.1 General design principles of the Base Ontology .. 11
5.2.1.1 General Principle .. 11
5.2.1.2 Essential Classes and Properties of the Base Ontology .. 12
5.2.2 Use of ontologies for Generic interworking with Area Networks .. 15
5.2.2.1 General Principle .. 15

6 Description of Classes and Properties .. 17
6.1 Classes ... 17
6.1.1 Class: Thing ... 17
6.1.2 Class: ThingProperty .. 18
6.1.3 Class: Aspect .. 19
6.1.4 Class: MetaData ... 20
6.1.5 Class: Device .. 21
6.1.6 Class: InterworkedDevice .. 22
6.1.7 Class: AreaNetwork ... 23
6.1.8 Class: Service ... 24
6.1.9 Class: Functionality .. 26
6.1.9.0 General description ... 26
6.1.9.1 Class: ControllingFunctionality .. 27
6.1.9.2 Class: MeasuringFunctionality ... 27
6.1.10 Class: Operation ... 28
6.1.10.0 General description ... 28
6.1.10.1 Class: GET_InputDataPoint ... 29
6.1.10.2 Class: SET_OutputDataPoint ... 30
6.1.11 Class: Command .. 31
6.1.12 Class: OperationInput ... 32
6.1.13 Class: OperationOutput .. 33
6.1.14 Class: OperationState ... 34
6.1.15 Class: InputDataPoint ... 36
6.1.16 Class: OutputDataPoint .. 37
6.1.17 Class: Variable ... 38
6.1.18 Class: SimpleTypeVariable .. 40
6.2 Object Properties ... 41
6.2.1 Void .. 41
6.2.2 Void .. 41

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 4 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.3 Object Property: consistsOf ... 41
6.2.4 Object Property: describes ... 41
6.2.5 Object Property: exposesCommand ... 41
6.2.6 Object Property: exposesFunctionality .. 42
6.2.7 Object Property: hasCommand .. 42
6.2.8 Object Property: hasFunctionality .. 42
6.2.9 Object Property: hasInput ... 42
6.2.10 Object Property: hasInputDataPoint ... 43
6.2.11 Object Property: hasMetaData ... 43
6.2.12 Void .. 43
6.2.13 Object Property: hasOperation ... 43
6.2.14 Object Property: hasOperationState ... 43
6.2.15 Void .. 44
6.2.16 Object Property: hasOutput .. 44
6.2.17 Object Property: hasOutputDataPoint .. 44
6.2.18 Object Property: hasService ... 44
6.2.19 Object Property: hasSubStructure .. 44
6.2.20 Object Property: hasThingProperty .. 45
6.2.21 Object Property: hasThingRelation .. 45
6.2.22 Void .. 45
6.2.23 Void .. 45
6.2.24 Void .. 45
6.2.25 Object Property: isPartOf ... 45
6.2.26 Object Property: refersTo ... 45
6.3 Data Properties ... 46
6.3.1 Data Property: hasDataType .. 46
6.3.2 Data Property: hasDataRestriction ... 47
6.3.2.0 General description ... 47
6.3.2.1 Data Property: hasDataRestriction_minInclusive ... 48
6.3.2.2 Data Property: hasDataRestriction_maxInclusive .. 48
6.3.2.3 Data Property: hasDataRestriction_minExclusive .. 48
6.3.2.4 Data Property: hasDataRestriction_maxExclusive ... 48
6.3.2.5 Data Property: hasDataRestriction_length.. 48
6.3.2.6 Data Property: hasDataRestriction_minLength .. 48
6.3.2.7 Data Property: hasDataRestriction_maxLength ... 48
6.3.2.8 Data Property: hasDataRestriction_pattern .. 48
6.3.2.9 Data Property: hasDataRestriction_langRange .. 48
6.3.3 Data Property: hasValue ... 48
6.3.4 Data Property: netTechnologyCommunicationProtocol... 49
6.3.5 Data Property: netTechnologyPhysicalStandard .. 49
6.3.6 Data Property: netTechnologyProfile ... 49
6.3.7 Data Property: oneM2MTargetURI ... 49
6.3.8 Data Property: oneM2MAttribute .. 50
6.3.9 Data Property: oneM2MMethod .. 50
6.4 Annotation Properties .. 50
6.4.1 Annotation Property: resourceDescriptorLink ... 50

7 Instantiation of the Base Ontology and external ontologies to the oneM2M System 51
7.1 Instantiation rules for the Base Ontology .. 51
7.1.1 Instantiation of classes of the oneM2M Base Ontology and derived external ontologies in the

oneM2M System: ... 51
7.1.1.1 General on instantiating classes of the Base Ontology in the oneM2M System 51
7.1.1.2 Instantiation of individual classes of the Base Ontology .. 52
7.1.2 Instantiation of Object Properties ... 57
7.1.3 Instantiation of Data Properties .. 57
7.1.4 Instantiation of Annotation Properties ... 57
7.2 Common mapping principles between the Base Ontology and external ontologies .. 57

8 Functional specification of communication with the Generic interworking IPE 58
8.1 Usage of oneM2M resources for IPE communication ... 58
8.1.1 General design principles (informative) ... 58
8.1.2 Parent-child and linking resource relationships.. 59

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 5 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

8.2 Specification of the IPE for Generic interworking .. 61
8.2.1 General functionality of a Generic interworking IPE ... 61
8.2.2 Interworked Device discovery.. 61
8.2.3 Handling of DataPoints by the IPE .. 62
8.2.4 Handling of Operations by the IPE .. 62
8.2.5 Removing Devices. .. 64
8.3 Specification of the behavior of a communicating entity in message flows between IPE and the

communicating entity .. 64
8.3.1 Preconditions on the communicating entity ... 64
8.3.2 Flow from the communicating entity to the IPE using InputDataPoints of a Service 64
8.3.2.1 Flow from the communicating entity to the IPE using a <container> type InputDataPoint 64
8.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint 65
8.3.3 Flow from the IPE to the communicating entity using OutputDataPoints of a Service 65
8.3.4 Flow from the communicating entity to the IPE using Operations of a Service .. 65
8.3.5 Flow from the IPE to the communicating entity using Operations of a Service .. 66

9 FlexContainer specializations for Generic interworking .. 66
9.1 Introduction.. 66
9.2 Resource Type genericInterworkingService .. 67
9.3 Resource Type genericInterworkingOperationInstance .. 69

Annex A (normative): OWL representation of Base Ontology .. 74

Annex B (informative): Mappings of selected external ontologies to the Base Ontology 75

B.1 Mapping of SAREF .. 75
B.1.1 Introduction to SAREF .. 75
B.1.3 Mapping SAREF to oneM2M resource structure .. 78
B.1.3.1 Introduction .. 78
B.1.3.2 Mapping rules... 78
B.1.3.3 Example showing the uses of the semanticDescriptor resource and instantiation in the oneM2M

resource structure ... 78

History .. 84

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 6 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

1 Scope

The present document contains the specification of the oneM2M base ontology. A formal OWL representation of the

base ontology can be found at http://www.onem2m.org/ontology/Base_Ontology.

The present document also specifies an instantiation of the base ontology in oneM2M resources which is required for

generic interworking.

In addition the present document contains the functional specification for an Interworking Proxy Application Entity

(IPE), the oneM2M resources and their usage for generic interworking.

Finally an example is given how external ontologies can be mapped to the base ontology. The example uses the Smart

Appliances REFerence (SAREF) ontology (http://ontology.tno.nl/saref).

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

reference document (including any amendments) applies.

The following referenced documents are necessary for the application of the present document.

[1] oneM2M TS-0011: "Common Terminology".

[2] oneM2M TS-0001: "Functional Architecture".

[3] W3C Recommendation: "RDF 1.1 Concepts and Abstract Syntax".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or

non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the

reference document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the

user with regard to a particular subject area.

[i.1] oneM2M Drafting Rules.

NOTE: Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[i.2] The Smart Appliances REFerence (SAREF) ontology.

NOTE: Available at http://ontology.tno.nl/saref/.

[i.3] Open-source ontology editor PROTÉGÉ.

NOTE: Available at http://protege.stanford.edu/.

[i.4] W3C OWL Working Group: "OWL 2 Web Ontology Language Document Overview".

NOTE: Available at http://www.w3.org/TR/owl2-overview/.

http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf
http://ontology.tno.nl/saref/
http://protege.stanford.edu/
http://www.w3.org/TR/owl2-overview/

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 7 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [1] and the following

apply:

annotation property: property that can be used to add information (metadata/data about data) to classes, individuals

and Object/Data Properties

class: OWL standard ontology language from the World Wide Web Consortium (W3C) (see [i.4]), Concepts are called

"Classes"

concept: entity of an Ontology that has an agreed, well defined, meaning within the domain of interest of that ontology

NOTE: A Concept is conceptually grouping a set of Individuals.

data property: property that relates an individual of a Class to data of a stecified type and range

interworked device: non-oneM2M device (NoDN) for which communication with oneM2M entities can be achieved

via an Interworking Proxy Application Entity (IPE)

ontology: formal specification of a conceptualization, that is defining Concepts as objects with their properties and

relationships versus other Concepts

generic interworking: generic interworking allows interworking with many types of non- oneM2M Area Networks

and Devices that are described in the form of a oneM2M compliant ontology which is derived from the oneM2M Base

Ontology

NOTE: Generic interworking supports the interworking variant "full mapping of the semantic of the non-

oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [2].

object property: property that relates an individual of a domain Class to an individual of a range Class

property: in OWL standard ontology language Properties represent relations among individuals

NOTE: Properties can be sub-categorized as Object Properties, Data Properties and Annotation Properties.

proxied device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that represents the Interworked

Device in the oneM2M System

relation: (also called "interrelation" or "property") stating a relationship among individuals

restriction: describes a class of individuals based on the relationships that members of the class participate in

NOTE: Restrictions can be sub-categorized as: existential Restrictions, universal Restrictions, Cardinality

restrictions and hasValue Restrictions.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in oneM2M TS-0011 [1] and the following apply:

AE Application Entity

OWL Web Ontology Language

SAREF Smart Appliances REFerence ontology

SPARQL SPARQL Protocol and RDF Query Language

4 Conventions

The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be

interpreted as described in the oneM2M Drafting Rules [i.1].

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 8 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5 General information on the oneM2M Base Ontology
(informative)

5.1 Motivation and intended use of the ontology

5.1.1 Why using ontologies in oneM2M?

5.1.1.1 Introduction to ontologies

In a nutshell an ontology is a vocabulary with a structure. The vocabulary applies to a certain domain of interest

(e.g. metering, appliances, medicine, etc.) and it contains concepts that are used within that domain of interest, similar

to the "defined terms" in clause 3, "Definitions".

An ontology should:

 Capture a shared understanding of a domain of interest.

 Provide a formal and machine manipulable model of the domain.

The ontology lists and denominates these concepts which have agreed, well defined, meanings within the domain of

interest (e.g. the concept of "Device" has an agreed, well defined, meaning within the scope of the Smart Appliances

REFerence (SAREF) ontology see [i.2]).

Concepts do not identify individuals but they identify classes of individuals. Therefore, in the OWL standard ontology

language from the World Wide Web Consortium (W3C) (see [3]), concepts are called "Classes".

The structure part of the ontology is introduced through agreed, well defined, relationships between its concepts. Such a

relationship - in OWL called "Object Property" - links a subject concept to an object concept.

subject concept relationship object concept

in OWL:

domain Class Object Property range Class

EXAMPLE 1: In SAREF an Object Property "accomplishes" relates the "Device" class to the "Task" class:

Device accomplishes Task

Also the relationships/Object Properties of an ontology have agreed, well defined, meanings within the domain of

interest. In the example above the "accomplishes" part of the relationship is well documented as part of SAREF (see

[i.2]).

A second type of Properties in OWL is called "Data Properties". A Data Property is linking a subject Class to a data.

These data may be typed or untyped.

EXAMPLE 2: in SAREF the Data Property "hasManufacturer" links the class "Device with data of datatype

"Literal":

Device hasManufacturer Literal

Again, the Data Properties of an ontology have agreed, well defined, meanings within the domain of interest.

In the example 2, the Data Property "hasManufacturer" indicates that the Literal, that is linked via this Data Property

will indicate the manufacturer of the Device.

Data Properties can be considered similar to attributes in oneM2M.

A third type of Properties in OWL is called "AnnotationProperties". An Annotation Property is used to provide

additional information about ontology elements like classes and instances, which typically are external to the ontology

and would not be used for reasoning. Example usages for such additional information are for providing a creator, a

version or a comment. The object of an annotation property is either a data literal, a URI reference, or an individual.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 9 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

In general, an individual of a certain Class may or may not have a particular relation (Object Property, Data Property or

Annotation Property) that is defined by the ontology. However, if such a relation exists for the individual then that

relation should be used with the meaning specified by the ontology.

One additional, crucial aspect differentiates an ontology from a vocabulary with a structure. An ontology enables

specified, allowed constructs (based on predicate logic) and can be represented in a formal, machine interpretable form

e.g. by the OWL standard ontology language. This allows the creation of queries (e.g. through the SPARQL query

language) that search for individuals of specified classes, having specified relationships, etc.

The OWL flavour OWL-DL (where DL stands for "Description Logic"), that is used in the present document and that is

supported by the ontology-editing tool "Protégé" (see [i.3]), has the additional advantage that it is underpinned by a

description logic. For ontologies that fall into the scope of OWL-DL a reasoner can be used to automatically check the

consistency of classes, take what has explicitly stated in the ontology and use it to infer new information. OWL-DL

ensures that queries are decidable.

Additionally, OWL-DL allows the creation of Intersection, Union and Complement classes, restrictions (e.g. on the

required/allowed number of relationships for any individual of the Class along this property) an other useful constructs.

5.1.1.2 The purpose of the oneM2M Base Ontology

5.1.1.2.0 Introduction

Ontologies and their OWL representations are used in oneM2M to provide syntactic and semantic interoperability of the

oneM2M System with external systems. These external systems are expected to be described by ontologies.

The only ontology that is specified by oneM2M is the oneM2M Base Ontology, as described in the present document.

However, external organizations and companies are expected to contribute their own ontologies that can be mapped

(e.g. by sub-classing, equivalence..) to the oneM2M Base Ontology.

Such external ontologies might describe specific types of devices (as e.g. in the SAREF ontology) or, more generally,

they might describe real-world "Things" (like buildings, rooms, cars, cities.) that should be represented in a oneM2M

implementation. The value for external organizations and companies to provide their ontologies to oneM2M consists in

supplementing oneM2M data with information on the meaning/purpose of these data. The OWL representation of that

ontology provides a common format across oneM2M.

The oneM2M Base Ontology is the minimal ontology (i.e. mandating the least number of conventions) that is required

such that other ontologies can be mapped into oneM2M.

5.1.1.2.1 Syntactic interoperability

Syntactic interoperability is mainly used for interworking with non-oneM2M devices in Area Networks. In this case an

ontology - represented as an OWL file - that contains the Area Network specific types of communication parameters

(names of operations, input/output parameter names, their types and structures, etc.) is used to configure an

Interworking Proxy Entity (IPE).

With the help of this OWL file the IPE is able to allocate oneM2M resources (AEs, containers) that are structured along

the Area Network specific parameters and procedures. This enables oneM2M entities to read/write from/into these

resources such that the IPE can serialize the data and send/receive them from/to the devices in the Area Network.

The semantic meaning of these resources is implicitly given by the interworked Area Network technology.

Each ontology that describes a specific type of interworked Area Network needs to be derived from the oneM2M Base

Ontology. In particular the device types of an ontology of an interworked Area Network need to be mapped (e.g. by

sub-typing) into the concept "Interworked Device" of the oneM2M Base Ontology.

5.1.1.2.2 Semantic interoperability

Semantic interoperability is mainly used to describe functionality for services provided by oneM2M compliant devices

(M2M Devices).

For example. different, oneM2M compliant types of washing machines may all perform a functionality like "washing-

function" ,"drying-function", "select wash temperature"…, however the oneM2M resources (containers), through which

these functions can be accessed, can have different resourceNames, child-structures and type of content.

In this case an ontology - represented as an OWL file -contains the specific types of the M2M Application Service

and/or Common Service of the M2M Device (e.g. CRUD operation, resourceNames, child-structures and type of

content, etc.) together with the functionality of that service (e.g. "washing-function").

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 10 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Each ontology that describe a specific type of M2M Device needs to be derived from the oneM2M Base Ontology. In

particular the device type needs to be mapped (e.g. by sub-typing) into the concept "Device" of the oneM2M Base

Ontology.

5.1.2 How are the Base Ontology and external ontologies used?

5.1.2.1 Overview

This clause describes how an external ontology that is compatible with the Base Ontology can be used in a joint fashion.

NOTE: Further use of external ontologies is left to subsequent releases.

5.1.2.2 Introduction to usage of classes, properties and restrictions

An ontology consists of Properties and Classes.

Properties represent relationships, and link individuals from the specified domain (a class) to individuals from the

specified range (another class). There are two main types of properties in the Base Ontology, object properties and data

properties. An object property describes a relationship between two object individuals. A data properties describes a

relationship between an object individuals and a concrete data value that may be typed or untyped.

Classes are interpreted as sets of individuals, and sometimes classes are also seen as a concrete representation of

concepts. In the Base Ontology, a Class can be directly defined by the class name and class hierarchy or defined by the

properties characteristics of the individuals in the class. The latter method is known as restriction. The classes defined

by restriction can be anonymous, which contains all of the individuals that satisfy the restriction.

In the Base Ontology, the restrictions can be divided as existential restrictions, universal restrictions and cardinality

restrictions:

 Existential restrictions describe classes of individuals that participate in at least one (some) relationship along

a given property to individuals that are members of the class, e.g. since a Device (Class: Device) has at least

one function (Object Property: hasFunction) (Class: Function) that this device accomplishes, then (Class:

Device) is a subclass of the anonymous class of (Object Property: hasFunction) some (Class: Function).

 Universal restrictions describe classes of individuals that for a given property only have relationships along

this property to individuals that are members of the class. For example, since a subclass "Watervalve" of

(Class: Device) only has a function (Object Property: hasFunction) subclass "Open_or_Close_Valve" of

(Class: Function), then (Class:Watervale) is a superclass of the anonymous class of (Object Property:

hasFunction) only (Class: Open_or_Close_Valve).

 Cardinality restrictions describe classes of individuals that, for a given property, only have a specified number

of relationships along this property to individuals that are members of the class.

5.1.2.3 Methods for jointly using the Base Ontology and external ontologies

If the Base Ontology is available and the external ontologies are compatible with the Base Ontology, the Base Ontology

and the external ontologies can be jointly used in the following ways.

1) Classes and properties mapping:

- The names of the class and properties in different ontologies may be totally different, but the meanings

of these class and properties can be relevant. Classes and proporties mapping is used to link the relevant

classes and properties in different ontologies.

- The descriptions for the classes and properties mapping relationship of the Base Ontology and external

ontologies can be given in an ontology or a semantic rule depending on the frequency of the usage. For

the frequent cases, it is better to give the mapping description in an ontology, even in the Base Ontology.

- The classes and properties mapping can be based on the properties defined in OWL and RDFs, e.g.

rdfs:subClassOf, owl:equivalentClass, for classifying the hierarchy of the classes and properties in Base

Ontology and external ontologies. The inheritance from upper properties and classes will be implied

according to the mapped hierarchy. For example, when a class A in an external ontology is mapped as a

subclass of the class B in the Base Ontology, it implies that the properties of class B in the Base

Ontology will be inherited by the class A in the external ontology.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 11 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 1 gives a simple example for classes and properties mapping between two ontologies.

Table 1: An example for classes and properties mapping between two ontologies

Properties mapping Classes mapping

property I mapping
relationship

property II class I mapping relationship class II

OntologyB:
hasSwitch

rdfs:subPropert
yOf

OntologyA:
hasOperation

OntologyB:
appliance

rdfs:subClassOf OntologyA:device

OntologyA:
hasPower

owl:equivalent
Property

OntologyB:
hasPower

OntologyB:la
mp

owl:equivalentClass OntologyA:light

OntologyA:
hasVendor

owl:equivalent
Property

OntologyB:
hasManufacturer

OntologyB:S
witch

rdfs:subClassOf OntologyA:Operatio
n

2) Individual annotation across multiple ontologies:

- Though the names of the class and properties in different ontologies may be totally different, the

semantic annotation for individuals can be done based on these different ontologies respectively and

independently. In this way, the knowledge from different ontologies are used together to describe the

individuals.

Table 2 gives a simple example for individual annotation across two ontologies.

Table 2: An example for individual annotation across two ontologies

Individuals Semantic annotation based on Ontology A Semantic annotation based on Ontology B

Properties classes properties Classes

Light A

rdf:type Ontology A: Light rdf:type Ontology B:ledLight

OntologyA:
hasOperation

Ontology A:Open OntologyB:
hasColor

rdf:datatype="&xsd;string">'red'<

OntologyA:
hasStatus

rdf:datatype="&xsd;boolean">tr
ue<

OntologyB:
hasSwitch

OntologyB:Switch

NOTE: The two methods can be used jointly or independentlly.

The compatibility of two ontologies depends on their class hierarchies. When the class hierarchy of one ontology can be

mapped as a part or an external part of the class hierarchy of the other ontology, they are compatible. When multiple

ontologies are pairwise compatible, they are compatible.

5.2 Insights into the Base Ontology

5.2.1 General design principles of the Base Ontology

5.2.1.1 General Principle

The Base Ontology has been designed with the intent to provide a minimal number of concepts, relations and

restrictions that are necessary for semantic discovery of entities in the oneM2M System. To make such entities

discoverable in the oneM2M System they need to be be semantically described as classes (concepts) in a -

technology/vendor/other-standard specific - ontology and these classes (concepts) need to be related to some classes of

the Base Ontology as sub-classes.

Additionally, the Base Ontology enables non-oneM2M technologies to build derived ontologies that describe the data

model of the non-oneM2M technology for the purpose of interworking with the oneM2M System.

The Base Ontology only contains Classes and Properties but not instances because the Base Ontology and derived

ontologies are used in oneM2M to only provide a semantic description of the entities they contain.

Instantiation (i.e. data of individual entities represented in the oneM2M System - e.g. devices, things, etc.) is done via

oneM2M resources

The Base Ontology is available at the web page:

 http://www.onem2m.org/ontology/Base_Ontology;

which contains the latest version of the ontology and individual versions of the ontology (see Annex A)

http://www.onem2m.org/ontology/Base_Ontology

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 12 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

5.2.1.2 Essential Classes and Properties of the Base Ontology

Device

hasService hasFunctionality

Operation
Input

refersTo

Controlling
Functionality

consistsOf

Operation
Output

Operation
State

hasOperation
State

exposes
Functionality

Interworked
Device

Thing
hasThingProperty

hasThingRelation
Thing

Property

is-a

is-a

Variable

Output
DataPoint

is-a

is-a

FunctionalityService

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta
Data

Area
Network

isPartOf

hasOutput hasInput

hasMetaData

describes

is-aSimpleType
Variable

Measuring
Functionality

Input
DataPoint

exposes
Command

is-a

The oneM2M Base Ontology

GET_
Input

DataPoint

is-a

SET_
Output

DataPoint

Variable

Aspect

hasOutput
DataPoint

hasInput
DataPoint

hasSub
Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

Legend: A class shown with grey
shading indicates that the same
class appears multiple times in the figure

Variable

hasSub
Structure

Figure 1: The oneM2M Base Ontology

Figure 1 shows the essential Classes and Properties of the Base Ontology. The nodes (bubbles) denote Classes whereas

edges (arrows) denote Object Properties.

The graph in figure 1 can be read as follows:

 A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M System.

A Thing may have properties (Object Property: hasThingProperty).

A Thing can have relations to other things (Object Property: hasThingRelation).

E.g. A room that is modelled in oneM2M would be a Thing that could have a room-temperature as a

ThingProperty (via hasThingProperty) and could have a hasThingRelation "isAdjacentTo" to another room.

In general it isassumed that a Thing is not able to conmmunicate electronically with its environment. However,

the sub-class of Thing that is able to interact electronically is called a "Device".

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 13 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 A ThingProperty (Class: ThingProperty) denotes a property of a Thing. A Thing can be described with (the

values of) ThingProperties, but in general the Thing cannot influence that value or being influenced by it. A

human or a computer or a device could set the value of a Thing's ThingProperty and possibly read it. A

ThingProperty be can be retrieved or updated by an entity of the oneM2M System.

E.g. the indoor temperature of the room could be a Value of a Thing "room", or the manufacturer could be a

ThingProperty of a Thing "car".

A ThingProperty of a thing can describe a certain Aspect, e.g. the indoor temperature describes the Aspect

"Temperature" that could be measured by a temperature sensor.

A ThingProperty of a Thing can have meta data

 Variable (Class: Variable) constitutes a super class to the following classes: ThingProperty, OperationInput,

OperationOutput, OperationState, InputDataPoint, OutputDataPoint. Its members are entities that have some

data (e.g. integers, text, etc., or structured data) that can change over time. These data of the Variable usually

describe some real-world Aspects (e.g. a temperature) and can have MetaData (e.g. units, precision).

A Variable can be structured, i.e. it can consist of (sub-) Variables.

 One sub-class is defined in the base ontology:

- SimpleTypeVariable (Class: SimpleTypeVariable) is a sub-class of Variable that only consists of

Variables of simple xml types like xsd:integer, xsd:string…, potentially including restrictions.

- MetaData (Class: MetaData) contain data (like units, precision-ranges, etc.) about the Values of a Thing

or about an Aspect.

E.g. the indoor temperature could have meta data: "Degrees Celsius".

- A Device (Class: Device) is a Thing (a sub-class of class:Thing) that is able to interact electronically

with its environment.

A Device is designed to accomplish a particular task.

A Device contains some logic and is producer and/or consumer of data that are exchanged via its

Services with other entities (Devices, Things) in the network. A Device interacts through the DataPoints

and/or Opertions of its Services.

In the context of oneM2M a Device is always assumed to be capable of communicating electronically via

a network (oneM2M or interworked non-oneM2M network):

 In order to accomplish its task, the device performs one or more functionalities (Object Property:

hasFunctionality) (Class: Functionality).

These functionalities are exposed in the network as Services of the Device.

 A Device can be composed of several (sub-) Devices (Object Property: consistsOf) (Class: Device).

=> consistsOf only Device.

 Each Device (including sub-Devices) needs to be individually addressable in the network.

 E.g. a "lightswitch" would be a device, a combined fridge/freezer would be a device that consists of a

sub-device fridge and a sub-device freezer.

- A Functionality (Class: Functionality) represents the functionality necessary to accomplish the task for

which a Device is designed. A device can be designed to perform more than one functionality.

The Class: Functionality exhibits the - human understandable - meaning what the device "does":

- A functionality refers to (e.g. observes or influences) a certain Aspect.

 E.g. considering a "light switch" then a related Functionality could be "Controlling_ON_OFF".

These functionalities would refer to an Aspect "lighting", that is influenced by the device "light switch".

 Two sub-classes of class Functionality are defined in the base ontology:

- ControllingFunctionality (Class: ControllingFunctionality) is a sub-class of Functionality that only

controls/influences real world Aspects that the functionality relates to.

- MeasuringFunctionality (Class: MeasuringFunctionality) is a sub-class of Functionality that only

measures/senses real world Aspects that the functionality relates to.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 14 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 An Aspect (Class: Aspect) describes the real-world aspect that a functionality relates to. Aspect is also used to

describe a quality or kind of OperationInput- or OperationOutput variables. The Aspect could be a (physical or

non-physical) entity or it could be a quality.

 A Command (Class: Command) represents an action that can be performed to support the Functionality. An

Operation exposes a Command to the network. OperationInput and OperationOutput of the related Operation

can parameterize the command.

e.g. the Functionality "Dimming-Functionality" could have a Command "setPercentage", with a parameter that

has values 0 - 100.

 A Service (Class: Service) is a representation of a Functionality to a network that makes the Functionality

discoverable, registerable, remotely controllable in the network. A Service can represent one or more

Functionalities. A Service is offered by a device that wants (a certain set of) its Functionalities to be

discoverable, registerable, remotely controllable by other devices in the network:

- While a Functionality describes the meaning of the device's functionality the Service (Class: Service) is

used to describe how such functionality is represented in a communication network and is therefore

dependent on the technology of the network.

 E.g. the Functionality: "turn_light_On_or_Off" could be exposed in the network by a Service "Binary Value

Actuator".

- A Service may be composed of smaller, independent (sub)Services, e.g. re-usable servicemodules.

 An OutputDataPoint (class: OutputDataPoint) is a Variable of a Service that is set by a RESTful Device in its

environment and that provides state information about the Service. The Device updates the OutputDataPoint

autonomously (e.g. at periodic times). To enable a third party to retrieve the current value of a

OutputDataPoint (out of schedule) devices often also offer a SET_OutputDataPoint Operation to trigger the

device to update the data of the OutputDataPoint.

 An InputDataPoint (class: InputDataPoint) is a Variable of a Service that is set by a RESTful Device in its

environment and that the Device readsout autonomously (e.g. at periodic times). To enable a third party to

instruct the device to retrieve (out of schedule) the current value of a InputputDataPoint devices often also

offer a GET_InputDataPoint Operation to trigger the device to retrieve the data from the InputDataPoint.

NOTE 1: Input- and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful way,

while Operations are the procedures that are used for remote procedure based communication. Operations

are, however, also needed in RESTful systems to correlate output, that is produced by a device, to the

input that triggered the production of that output.

 An Operation (Class: Operation) is the means of a Service to communicate in a procedure-type manner over

the network (i.e. transmit data to/from other devices).

An Operation is a representation of a Command to a network:

- An Operation can have OperationInput (data consumed by the Device) and OperationOutput (Data

produced by the Device), as well as a Method that describes how the Operation is invoked over the

network.

- An Operation shall have a Data Property "OperationState" that indicates how the operation has

progressed in the device.

- An Operation is transient. I.e. an Operation can be invoked, possibly produces output and is finished.

- An Operation correlates the output data of the Operation to the input data that were used at Operation

invokation.

 Two sub-classes of class Operation are defined in the base ontology:

- GET_InputDataPoint (Class: GET_InputDataPoint) is a sub-class of Operation that may be offered by

a Device to trigger the device to retrieve the data of an InputDataPoint.

(e.g. outside of the schedule when the device normally retrieves that DataPoint).

- SET_OutputDataPoint (Class: SET_OutputDataPoint) is a sub-class of Operation that may be offered

by a Device to trigger the device to update the data of an OutputDataPoint.

(e.g. outside of the schedule when the device normally updates that DataPoint).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 15 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 OperationInput (Class: OperationInput) describes the type of input of an Operation to a service of the device.

The OperationInput class represents all possible values for that input (data types and -ranges or a list of

enumerated individuals). An Operation can have multiple OperationInputs and/or OperationOutputs. If an

instance of an Operation is executed then the input value to that Operation is an instance of its OperationInput

classes (e.g. enumerated instances like "ON" or "OFF" for an OperationInput class that sets the state of a

switch or a real number within a certain range for a "Temperature" OperationInput class for a thermostat).

 OperationOutput (Class: OperationOutput) describes the type of output of an Operation from a service of the

device. The OperationOutput class represents all possible values for that OperationOutput (data types and -

ranges or a list of enumerated individuals). An Operation can have multiple OperationInputs and/or

OperationOutputs. If an instance of an Operation is executed then the output values of that Operation are

instances of its OperationOutput classes.

 OperationState (Class: OperationState) describes the current state during the lifetime of an Operation. The

OperationState class represents all possible values for that state (enumerated individuals). The OperationState

is set during the progress of the operation by the entity invoking the operation, the entity that is the target of

the operation, e.g. a device (or for interworked devices by the IPE) and the CSE. It takes values like

"data_received_by_application", "operation_ended", "operation_failed",

"data_transmitted_to_interworked_device".

 Area Network (Class: AreaNetwork):

- An Area Network is characterized by its technology:

 physical properties (e.g. IEEE_802_15_4_2003_2_4GHz); its

 communication protocol (e.g. ZigBee_1_0); and

 potentially a profile (e.g. ZigBee_HA).

 Interworked Device (Class: InterworkedDevice):

- Is part of an AreaNetwork.

NOTE 2: An Interworked Device is not a oneM2M Device and can be only accessed from the oneM2M System by

communicating with a "proxied" (virtual) device that has been created by an Interworking Proxy Entity

(IPE).

The InterworkedDevice class describes the "proxied" (virtual) device that is represented in the oneM2M

System as an individual <AE> resource or a child resource of the <AE> of its IPE.

5.2.2 Use of ontologies for Generic interworking with Area Networks

5.2.2.1 General Principle

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy

Entities (IPE).

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 16 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

oneM2M compliant
Solution

Area Network
(e.g. KNX)

real Devices in Area Network
“proxied” Devices in the oneM2M
System technology

oneM2M

AE

R
E

S
T
-f

u
l

R
e

s
o

u
rc

e
 a

c
c
e
s
s

Inter

working

Proxy

Entity

Figure 2: Interworking

The IPE creates "proxied" devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by

oneM2M Applications in the usual way.

To accomplish the creation of "proxied" devices the IPE uses an ontology that describes the the type of interworked

Area Network and its entities (device types, their operations, etc.).

For example, in figure 2, an ontology that describes a KNX Area Network and its entities would be needed.

To achieve the flexibility for the IPE to create "proxied" Devices for many different types of Area Networks each

ontology that describes a specific type of interworked Area Network needs to be derived from the Base Ontology that is

specified in the present document.

E.g. the OWL representation of an ontology that describes the entities of an Area Network of type "KNX" needs to:

a) contain an 'include' statement which includes Base Ontology;

b) the Class of "KNX Nodes" needs to be a subclass of the "Device" Class of oneM2M's Base Ontology;

c) the Class of "KNX Communication Objects" needs to be a subclass of the "Service" Class of the Base

Ontology;

d) etc.

NOTE: For the purpose of Generic interworking with Area Networks the Base Ontology is only used to describe

type information and not for describing instances of these types. E.g. the Base Ontology describes the

type "Device", but does not contain information about a specific Device.

The Base Ontology therefore only contains Classes and Properties but not instances.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 17 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6 Description of Classes and Properties

6.1 Classes

6.1.1 Class: Thing

Thing
hasThingProperty Thing

Property
hasThingRelation

Device

is-a

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Thing

Figure 3: Thing

Description

 A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M System.

A Thing that is not a Device is not able to conmmunicate electronically with its environment. However, the

sub-class of Thing that is able to interact electronically is called a "Device".

A Thing may have ThingProperties (Object Property: hasThingProperty). A Thing can have relations to other

things (Object Property: hasThingRelation).

Since a Thing that is not a Device is not able to conmmunicate electronically it cannot influence the value of

its ThingProperties or being influenced by it. Similarly a Thing cannot document its - real-world -

relationships (via hasThingRelation) to other Things.

 E.g. A room that is modelled in oneM2M would be a Thing that could have a room-temperature as a

ThingProperty and could have a relationship "isAdjacentTo" to another room.

Object Properties

This Class is the domain Class of Object Property:

 hasThingProperty (range Class: ThingProperty)

 hasThingRelation (range Class: Thing)

This Class is the range Class of Object Property:

 hasThingRelation (domain Class: Thing)

Data Properties

 none

Superclass-subclass Relationships

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 18 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This Class is subclass of:

 none

This Class is superclass of:

 device

Restrictions

This Class is anonymous sub-class of:

 hasThingRelation only Thing

(Universal restriction: a Thing can only have a relationship "hasThingRelation" to other Things)

6.1.2 Class: ThingProperty

Thing
Property

hasThingProperty

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: ThingProperty

Thing

Variable

is-a

hasMetaData
(inherited)

MetaData

describes
(inherited)

Aspect

Figure 4: ThingProperty

Description

 A ThingProperty (Class: ThingProperty) denotes a property of a Thing. A ThingProperty can e.g. be

observed or influenced by devices, or it constitutes static data about a Thing.

E.g. the indoor temperature of the room could be a ThingProperty of a Thing "room".

A ThingProperty of a thing can describe a certain Aspect, e.g. the indoor temperature describes the Aspect

"Temperature" that could be measured by a temperature sensor.

A ThingProperty of a Thing can have meta data.

 The class ThingProperty is a sub-class of the Variable class.

Object Properties

This Class is the domain Class of Object Property:

 describes (range Class: Aspect)

(inherited from class: Variable)

 hasMetaData (range Class: MetaData)

(inherited from class: Variable)

This Class is the range Class of Object Property:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 19 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 hasThingProperty (domain Class: Thing)

Data Properties

This Class is part of the domain Class of Data Property:

 Inherited from class: Variable and possibly Class SimpleTypeVariable.

(see clauses 6.1.17 and 6.1.18.)

Superclass-subclass Relationships

This Class is sub-class of:

 Variable

This Class is super-class of:

 None

Restrictions

 None

6.1.3 Class: Aspect

Aspect

hasMetaData

MetaData

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Aspect

Variable

describes

Functionality

refersTo

Figure 5: Aspect

Description

 An Aspect (Class: Aspect) describes the real-world aspect that a Functionality relates to. Aspect is also used to

describe the quality or kind of a Variable.

The Aspect could be a (physical or non-physical) entity or it could be a quality.

Object Properties

This Class is the domain Class of Object Property:

 hasMetaData (range Class: MetaData)

This Class is the range Class of Object Property:

 refersTo (domain Class: Functionality)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 20 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 describes (domain Class: Variable)

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 none

This Class is super-class of:

 none

Restrictions

 none

6.1.4 Class: MetaData

MetaData

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: MetaData

Variable Aspect

hasMetaDatahasMetaData

Figure 6: MetaData

Description

 MetaData (Class: MetaData) contain data (like units, precision-ranges …) about a Variable or about an

Aspect.

E.g. the indoor temperature could have as meta data an individual "Celsius_Scale" that specifies that the

temperature needs to be understood as degrees Celsius.

Object Properties

This Class is the domain Class of Object Property:

 none

This Class is the range Class of Object Property:

 hasMetaData (domain Class: Variable)

 hasMetaData (domain Class: Aspect)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 21 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 none

This Class is super-class of:

 none

Restrictions

 none

6.1.5 Class: Device

Device
hasService

ServiceconsistsOf

Thing

is-a

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Device

hasFunctionality

FunctionalityInterworked
Device

is-a

hasThingProperty

Thing
Property

Figure 7: Device

Description

 A Device (Class: Device) is a Thing (a sub-class of class:Thing) that is able to interact electronically with its

environment via a network.

A Device is designed to accomplish a particular task. A Device contains some logic and is producer and/or

consumer of data that are exchanged via its Services with other oneM2M entities (Devices, Things) in the

network. A Device may be a physical or non-physical entity.

A Device interacts through the DataPoints and/or Operations of its Services:

- In order to accomplish its task, the device performs one or more functionalities.

- These functionalities are exposed in the network as Services of the Device.

- A Device can be composed of several (sub-) Devices.

- Each Device (including sub-Devices) needs to be individually addressable in the network.

Object Properties

This Class is the domain Class of Object Property:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 22 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 consistsOf (range Class: Device)

 hasService (range Class: Service)

 hasFunctionality (range Class: Functionality)

 hasThingProperty (range Class: ThingProperty)

(inherited from Class:Thing)

This Class is the range Class of Object Property:

 consistsOf (domain Class: Device)

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 Thing

This Class is super-class of:

 InterworkedDevice

Restrictions

This Class is anonymous sub-class of:

 consistsOf only Device

(Universal restriction: a Device can only have a relationship "consistsOf" to other Devices)

6.1.6 Class: InterworkedDevice

Interworked
Device

Area
Network

Device

is-a

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: InterworkedDevice

isPartOf

Figure 8: InterworkedDevice

Description

 An InterworkedDevice (Class: InterworkedDevice) is a Device - e.g. in an Area Network - that does not

support oneM2M interfaces and can only be accessed from the oneM2M System by communicating with a

"proxied" (virtual) device that has been created by an Interworking Proxy Entity.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 23 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Object Properties

This Class is the domain Class of Object Property:

 isPartOf (range Class: AreaNetwork)

This Class is the range Class of Object Property:

 none

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 Device

This Class is super-class of:

 none

Restrictions

 none

6.1.7 Class: AreaNetwork

Area
Network

rdf:
PlainLiteral

Interworked
Device

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: AreaNetwork

rdf:
PlainLiteral

rdf:
PlainLiteral

netTechnology
PhysicalStandard

netTechnology
Communication

Protocol

netTechnology
Profile

isPartOf

Figure 9: AreaNetwork

Description

 An AreaNetwork (Class: AreaNetwork) is a Network that provides data transport services between an

Interworked Device and the oneM2M System. Different area Networks can use heterogeneous network

technologies that may or may not support IP access.

Object Properties

This Class is the domain Class of Object Property:

 none

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 24 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This Class is the range Class of Object Property:

 isPartOf (domain Class: InterworkedDevice)

Data Properties

 netTechnologyPhysicalStandard (range datatype: rdf:PlainLiteral) which serves for Identification of the

physical properties of a Area Network technology (e.g. IEEE_802_15_4_2003_2_4GHz)

 netTechnologyCommunicationProtocol (range datatype: rdf:PlainLiteral) which serves for Identification of a

communication protocol (e.g. ZigBee_1_0)

 netTechnologyProfile (range datatype: rdf:PlainLiteral) which serves for Identification of a profile

(e.g. ZigBee_HA) of a Area Network technology

Superclass-subclass Relationships

This Class is sub-class of:

 none

This Class is super-class of:

 none

Restrictions

 none

6.1.8 Class: Service

Service

exposes
Functionality

Functionality

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Service

Operation

hasOperation

Device

hasService

hasSubService

Output
DataPoint

Input
DataPoint

hasInputDataPoint hasOutputDataPoint

Figure 10: Service

Description

 A Service (Class: Service) is a electronic representation of a Functionality in a network. The Service exposes

the Functionality to the network and makes it discoverable, registerable and remotely controllable in the

network.

A Service is offered by a device that wants (a certain set of) its Functionalities to be discoverable, registerable,

remotely controllable by other devices in the network.

A Service can expose one or more Functionalities and a Functionality can be exposed by one or more Services.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 25 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 The Input- and Output DataPoints and Operations of a Service may have the same names as for a different

Service, however the Service to which they belong differentiates how they are addressed in the Device

(e.g. via a port specific to the Service).

NOTE: While a Functionality describes the - human understandable - meaning of a Service of the device the

Service is used to describe how such functionality is represented in a communication network and can be

accessed by electronic means. The Service and its Operations is therefore dependent on the technology of

the network, hard- and software of the device.

 E.g. the Functionality: "turn_light_On_or_Off" could be exposed in the network by a Service "UPDATE

Binary Value".

- Object Property "hasSubService" is expresses the fact that Services can be composed of independent

(sub)Services.

E.g. a Service could thus be composed out of multiple (reusable) service modules. A Dimmer could

contain a module "binaryActuator" to turn on/off and additionally "setInteger0-255Actuator" to set the

dimming level.

Object Properties

This Class is the domain Class of Object Property:

 exposesFunctionality (range Class: Service)

 hasOperation (range Class: Operation)

 hasInputDataPoint (range Class: InputDataPoint)

 hasOutputDataPoint (range Class: OutputDataPoint)

 hasSubService (range Class: Service)

This Class is the range Class of Object Property:

 hasService (domain Class: Device)

 hasSubService (domain Class: Service)

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 none

This Class is super -class of:

 none

Restrictions

 hasSubService only Service

(Universal restriction: a Service can only have a relationship "hasSubService" to other Service)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 26 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.1.9 Class: Functionality

6.1.9.0 General description

Measuring
Functionality

Service

exposes
Functionality

Functionality

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Classes: Functionality,
Controlling-, Measuring-

Command

hasCommand

Controlling
Functionalityis-a

Device

hasFunctioanality

Aspect

refersTo

Figure 11: Functionality

Description

 A Functionality (Class: Functionality) represents a particular function necessary to accomplish the task for

which a Device is designed. A device can be designed to perform more than one functionality.

The functionality exhibits the - human understandable - meaning what the device "does".

 A Functionality refers to (e.g. observes or influences) some real-world aspect(s), that can be modelled as a

Class: Aspect.

 E.g. considering a "light switch" then a related Functionality could be "Controlling_ON_OFF" or "Controlling

Brightness". These functionalities would refer to an Aspect "light-control".

 A Functionality of a Device can be influenced/observed by a human user through the Commands that this

Functionality has and that are offered to the user.

Object Properties

This Class is the domain Class of Object Property:

 hasCommand (range Class: Command)

 refersTo (range Class: Aspect)

This Class is the range Class of Object Property:

 exposesFunctionality (domain Class: Service)

 hasFunctionality (domain Class: Device)

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 27 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 none

This Class is super-class of:

 ControllingFunctionality

 MeasuringFunctionality

Restrictions

 none

6.1.9.1 Class: ControllingFunctionality

Description

 A ControllingFunctionality (Class: ControllingFunctionality) represents a functionality that has impacts on

the real world, but does not gather data. In general a ControllingFunctionality has Commands (and/or

Operations of its related Services) that receive input data.

 E.g. a thermostat would have "temperature-adjustment" as a ControllingFunctionality.

Object Properties

This Class is the domain Class of Object Property:

 none

This Class is the range Class of Object Property:

 none

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 Functionality

This Class is super-class of:

 none

Restrictions

 none

6.1.9.2 Class: MeasuringFunctionality

Description

 A MeasuringFunctionality (Class: MeasuringFunctionality) represents a functionality that has no impacts on

the real world, but only gathers data. In general a MeasuringFunctionality has Commands (and/or Operations

of its related Services) that generate output data.

 E.g. a temperature sensor would have "temperature-sensing" as a MeasuringFunctionality.

Object Properties

This Class is the domain Class of Object Property:

 none

This Class is the range Class of Object Property:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 28 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 none

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 Functionality

This Class is super-class of:

 none

Restrictions

 none

6.1.10 Class: Operation

6.1.10.0 General description

Operation

Command

Legend: … an OWL class
… an Object PropertyoneM2M
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Operation

Operation
Output

Service

hasOperation

Operation
Input

Operation
State

hasOperation
StatehasOutputhasInput

rdfs: LiteraloneM2M
TargetURI

rdf: PlainLiteral

oneM2M
Method

exposes
Command

GET_Input
DataPoint

SET_Output
DataPoint

is-a

Output
DataPoint

hasOutputDataPoint

Input
DataPoint

hasInput
DataPoint

Figure 12: Operation

Description

 An Operation (Class: Operation) is the means of a Service to communicate in a procedure-type manner over

the network (i.e. transmit data to/from other devices). It is the -machine interpretable- exposure of a -human

understandable- Command to a network.

An Operation is transient. I.e. an Operation can be invoked, possibly produces output and is finished:

- A non-oneM2M Device or a oneM2M entity (e.g. an AE) can invoke an Operation of the Device

(oneM2M Device or InterworkedDevice) and that invocation can trigger some action in the Device. If an

Operation has input data it may receive input data from:

 InputDataPoints (persistent entities); and/or

 OperationInput (transient entities, that are deleted when the Operation finishes);

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 29 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 and potentially produce output data into:

 OutputDataPoints (persistent entities) and/or

 OperationOutput (transient entities, that are deleted when the Operation finishes)

- An Operation correlates the output data of the Operation to the input data that were used at Operation

invokation.

- An Operation has an OperationState that allows a oneM2M entity to get informed on the progress of that

operation.

NOTE: The OperationState - which provides information of an ongoing or finished operation - should not be

confused with state information about the Device or Service, which potentially could be obtained as

output data of some operation.

Object Properties

This Class is the domain Class of Object Property:

 exposesCommand (range Class: Command)

 hasInput (range Class: OperationInput)

 hasInputDataPoint (range Class: InputDataPoint)

 hasOutput (range Class: OperationOutput)

 hasOutputDataPoint (range Class: OutputDataPoint)

 hasOperationState (range Class: OperationState)

This Class is the range Class of Object Property:

 hasOperation (range Class: Service)

Data Properties

 oneM2MMethod (range data type: rdf:PlainLiteral)

 oneM2MTargetURI (range data type: rdfs: Literal)

Superclass-subclass Relationships

This Class is sub-class of:

 none

This Class is super-class of:

 GET_InputDataPoint

 SET_OutputDataPoint

Restrictions

 none

6.1.10.1 Class: GET_InputDataPoint

Description

 GET_InputDataPoint (Class: GET_InputDataPoint) is an Operation that may be offered by a Device to

trigger the device to retrieve the data of an InputDataPoint

(e.g. outside of the schedule when the device normally retrieves data from that DataPoint)

Object Properties

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 30 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This Class is the domain Class of Object Property:

 hasInputDataPoint (range Class: InputDataPoint)

This Class is the range Class of Object Property:

 none

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 Operation

This Class is super-class of:

 none

Restrictions

 none

6.1.10.2 Class: SET_OutputDataPoint

Description

 SET_OutputDataPoint (Class: SET_OutputDataPoint) is an Operation that may be offered by a Device to

trigger the device to update the data of an OutputDataPoint

(e.g. outside of the schedule when the device normally updates that DataPoint)

Object Properties

This Class is the domain Class of Object Property:

 hasOutputDataPoint (range Class: OutputDataPoint)

This Class is the range Class of Object Property:

 none

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 Operation

This Class is super-class of:

 none

Restrictions

 none

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 31 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.1.11 Class: Command

Operation

Command

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Command

Operation
Output

Functionality

hasCommand

Operation
Input

hasOutputhasInput

Input
DataPoint

Output
DataPoint

exposes
Command

Figure 13: Command

Description

 A Command (Class: Command) represents an action that can be performed to support the Functionality. A

Command is the -human understandable - name of that action that is invoked in a device or is reported by the

device. An Operation exposes a Command to the network. OperationInput and OperationOutput of the related

Operation can parameterize the command.

e.g. the Functionality "dimming-functionality" of a light switch that remotely controls a light could have a

Command "setLightIntensity", with a parameter that has values 0 - 100 %.

 Also InputDataPoints and OutputDataPoints expose Commands to the network. When a Device communicates

in a RESTful way then changing (UPDATEing) an InputDataPoint triggers an action in the Device once the

Device has read out the data from the InputDataPoint.

Similarly, when a Device sets the data of an OutputDataPoint then it provides state information about the

Device.

NOTE: In RESTful systems the names of Input- and OutputDataPoints are usually chosen in such a way that they

express the Command, i.e. the human-understandable meaning (e.g. a binary InputDataPoint of a

lightswitch could have a name "Set_Light_Status"). Updating a DataPoint can be interpreted as executing

a Command.

Object Properties

This Class is the domain Class of Object Property:

 isExposedByOperation (range Class: Operation)

 hasInput (range Class: OperationInput)

 hasOutput (range Class: OperationOutput)

This Class is the range Class of Object Property:

 hasCommand (domain Class: Functionality)

 exposesCommand (domain Class: Operation OR InputDataPoint OR OutputDataPoint)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 32 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Data Properties

 none

Superclass-subclass Relationships

This Class is sub-class of:

 none

This Class is super-class of:

 none

Restrictions

 none

6.1.12 Class: OperationInput

Operation
Input

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OperationInput

Operation Command

hasInput

Variable

is-a

Figure 14: OperationInput

Description

 OperationInput (Class: OperationInput) describes an input of an Operation of a Service. OperationInput also

describes the input of a Command:

- OperationInput is transient. An instance of OperationInput is deleteted when the instance of its Operation

is deleted.

- An Operation/Command may have multiple OperationInputs and/or OperationOutputs. If an instance of

an Operation is invoked then the input value to that Operation shall be an instance of its OperationInput

class.

Object Properties

This Class is the domain Class of Object Property:

 hasMetaData (range Class: MetaData)

(inherited from class:Variable)

 describes (range Class: Aspect)

(inherited from class:Variable)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 33 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This Class is the range Class of Object Property:

 hasInput (domain Class: Operation)

 hasInput (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

 Inherited from class: Variable and possibly Class SimpleTypeVariable

(see clauses 6.1.17 and 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

 Variable

NOTE: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of OperationInput

may also be a SimpleTypeVariable.

This Class is super-class of:

 none

Restrictions

 none

6.1.13 Class: OperationOutput

Operation
Output

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OperationOutput

Operation Command

hasOutput

Variable

is-a

Figure 15: OperationOutput

Description

 OperationOutput (Class: OperationOutput) describes an output of an Operation. OperationOutput also

describes the output of a Command.

- OperationOutput is transient. An instance of OperationOutput is deleteted when the instance of its

Operation is deleted.

- An Operation/Command may have multiple OperationInputs and/or OperationOutputs.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 34 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Object Properties

This Class is the domain Class of Object Property:

 hasMetaData (range Class: MetaData)

(inherited from class:Variable)

 describes (range Class: Aspect)

(inherited from class:Variable)

This Class is the range Class of Object Property:

 hasOutput (domain Class: Operation)

 hasOutput (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

 Inherited from class: Variable and possibly Class SimpleTypeVariable

(see clauses 6.1.17 and 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

 Variable

NOTE: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of OperationOutput

may also be a SimpleTypeVariable

This Class is super-class of:

 none

Restrictions

 none

6.1.14 Class: OperationState

Operation
State

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OperationState

Operation

hasOperationState

SimpleType
Variable

is-a

Figure 16: OperationState

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 35 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Description

 OperationState (Class: OperationState) describes the current state of an Operation. The OperationState class

represents all possible values for that state (enumerated individuals). The OperationState is set during the

progress of the operation by the CSE and, optionally, the entity that is the target of the operation, e.g. a device

(or for interworked devices by the IPE).

 This class contains a text string that is provided by the AE (e.g. an IPE). Values for that text that are specified

in oneM2M are:

- "data_received_by_application"

- "operation_ended"

- "operation_failed"

- "data_transmitted_to_interworked_device"

 Additional values for the text string of the operationState attribute are permissible.

Object Properties

This Class is the range Class of Object Property:

 hasOperationState (domain Class: Operation)

Data Properties

This Class is part of the domain Class of Data Property:

 Inherited from class: Variable

(see clause 6.1.17)

 hasDataType (range data type: xsd:string)

(inherited from class: SimpleTypeVariable, see clause 6.1.18)

 hasDataRestriction_Pattern (range data type: xsd:string{"data received by application", "operation ended",

"operation failed", "data transmitted to interworked device"})

(inherited from class: SimpleTypeVariable, see clause 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

 SimpleTypeVariable

This Class is super-class of:

 none

Restrictions

 none

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 36 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.1.15 Class: InputDataPoint

Input
DataPoint

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: InputDataPoint

Operation Service

hasInputDataPoint

Variable

is-a

Command

exposes
Command

Figure 17: InputDataPoint

Description

 InputDataPoint (Class: InputDataPoint) is a Variable of a Service that is accessed by a RESTful Device in its

environment and that the Device reads out autonomously (e.g. at periodic times). To enable a third party to

instruct the device to retrieve (out of schedule) the current value of a InputputDataPoint devices often also

offer a GET_InputDataPoint Operation to trigger the device to retrieve the data from the InputDataPoint:

- An InputDataPoint is a persistent entity.

NOTE 1: Input- and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful way,

while Operations are the procedures that are used for remote procedure based communication. Operations

are, however, also needed in RESTful systems to correlate output, that is produced by a device, to the

input that triggered the production of that output.

Object Properties

This Class is the domain Class of Object Property:

 hasMetaData (range Class: MetaData)

(inherited from class:Variable)

 describes (range Class: Aspect)

(inherited from class:Variable)

This Class is the range Class of Object Property:

 hasInputDataPoint (domain Class: Operation)

 hasInputDataPoint (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

 Inherited from class: Variable and possibly Class SimpleTypeVariable

(see clauses 6.1.17 and 6.1.18)

Superclass-subclass Relationships

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 37 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This Class is sub-class of:

 Variable

NOTE 2: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of InputDataPoint

may also be a SimpleTypeVariable.

This Class is super-class of:

 none

Restrictions

 none

6.1.16 Class: OutputDataPoint

Output
DataPoint

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: OutputDataPoint

Operation Service

hasInputDataPoint

Variable

is-a

Command

exposes
Command

Figure 18: OutputDataPoint

Description

 OutputDataPoint (Class: OutputDataPoint) is a Variable of a Service that is set by a RESTful Device in its

environment and that the Device updates autonomously (e.g. at periodic times). To enable a third party to

instruct the device to update (out of schedule) the current value of a OutputputDataPoint devices often also

offer a SET_OutputDataPoint Operation to trigger the device to update the data of the OutputDataPoint:

- An OutputDataPoint is a persistent entity.

NOTE 1: Input- and Output DataPoints are usually used by Devices (AEs) that communicate in a RESTful way,

while Operations are the procedures that are used for remote procedure based communication. Operations

are, however, also needed in RESTful systems to correlate output, that is produced by a device, to the

input that triggered the production of that output.

Object Properties

This Class is the domain Class of Object Property:

 hasMetaData (range Class: MetaData)

(inherited from class:Variable)

 describes (range Class: Aspect)

(inherited from class:Variable)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 38 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

This Class is the range Class of Object Property:

 hasOutputDataPoint (domain Class: Operation)

 hasOutputDataPoint (domain Class: Command)

Data Properties

This Class is part of the domain Class of Data Property:

 Inherited from class: Variable and possibly Class SimpleTypeVariable

(see clauses 6.1.17 and 6.1.18)

Superclass-subclass Relationships

This Class is sub-class of:

 Variable

NOTE 2: Since class:SimpleTypeVariable is a sub-class of class:Variable a specific instance of OutputDataPoint

may also be a SimpleTypeVariable.

This Class is super-class of:

 none

Restrictions

 none

6.1.17 Class: Variable

Variable
describes

rdfs:Literal

Aspect

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: Variable
Input

DataPoint

rdf: PlainLiteral

oneM2M
Method

Output
DataPoint

Thing
Property

Operation
Output

Operation
Input

is-a

hasMetaData

MetaDataoneM2M
TargetURI

SimpeType
Variable

is-a

hasSub
Structure

Figure 19: Variable

Description

 A Variable (Class: Variable) constitutes a super class to the following classes: ThingProperty, OperationInput,

OperationOutput, OperationState, InputDataPoint, OutputDataPoint, SimpleTypeVariable. Its members are

entities that store some data (e.g. integers, text, etc., or structured data) that can change over time.

These data of the Variable usually describe some real-world Aspects (e.g. a temperature) and can have

MetaData (e.g. units, precision, etc.)

Object Properties

This Class is the domain Class of Object Property:

 hasMetaData (range Class: MetaData)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 39 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 describes (range Class: Aspect)

 hasSubStructure (range Class: Variable)

This Class is the range Class of Object Property:

 hasSubStructure (domain Class: Variable)

Data Properties

 oneM2MMethod (range datatype: rdf:PlainLiteral)

This data property contains a oneM2M Method through which the oneM2M instantiation of the value of the

Variable can be manipulated by the communicating entity:

- It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of type

<container> or <flexContainer>. This applies to sub-classes: OperationOutput, OutputDatapoint,

ThingProperty and OperationState.

- It contains the string "CREATE" for updating the variable when the oneM2M resource is of type

<container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

- It contains the string "UPDATE" for updationg the variable when the oneM2M resource is of type

<flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

 oneM2MTargetURI (range data type: rdfs: Literal)

This data property contains the URI of a oneM2M resource (<container> or <flexContainer>) through which

the oneM2M instantiation of the value of the Variable can be manipulated by the communicating entity. It can

contain an absolute address or an address relative to the <semanticDescriptor> resource that holds the RDF

description of the Variable.

That address could be e.g. the value of the parentID for the <container> or <flexContainer> of a Input- or

OutputDataPoint which has child-resource of type <semanticDescriptor> that holds the RDF description of the

DataPoint.

Superclass-subclass Relationships

This Class is sub-class of:

 none

This Class is super-class of:

 ThingProperty

 OperationInput, OperationOutput

 OperationState

 InputDataPoint

 OutputDataPoint

 SimpleTypeVariable

Restrictions

 none

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 40 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.1.18 Class: SimpleTypeVariable

SimpleType
Variable

Legend: … an OWL class
… an Object Property
… a Data Property
… indicates an inheritance (sub-Class / sub-Property)is-a

dataProperty

objectProperty

Class

Class: SimpleTypeVariable

rdf: PlainLiteral

has
DataType

Variable
is-a

oneM2M
Attribute

rdf: PlainLiteralrdfs: Literal

hasData
Restriction

Operation
State

is-a

rdfs: Literal

hasValue

Figure 20: SimpleTypeVariable

Description

 SimpleTypeVariable (Class: SimpleTypeVariable) is a sub-class of class:Variable that only consists of

Variables of simple xml types like xsd:integer, xsd:string, etc., potentially including restrictions

 The simple datatypes and -restrictions contained in "OWL 2 Web Ontology Language Structural Specification

and Functional-Style Syntax (Second Edition)" [i.4] are supported.

Object Properties

This Class is the domain Class of Object Property:

 none

This Class is the range Class of Object Property:

 none

Data Properties

This Class is part of the domain Class of Data Property:

 Inherited from class: Variable.

(see clause 6.1.17)

 hasValue (range data type: rdfs: Literal)

This data property contains the value of the Variable if that value is part of the semantic description and is not

contained in a different resource (identified by the oneM2MTargetURI data property). Storing the value of a

Variable in a semantic description (i.e. as part of the RDF description in the semanticDescriptor resource) is

useful for values that are relatively static (e.g. the name of the manufacturer):

- Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of the two shall

be instantiated.

 oneM2MAttribute (range data: rdf:PlainLiteral)

This Data Property contains the name of the attribute of the oneM2M resource (of type <container> or

<flexContainer>) that is referenced with the oneM2MTargetURI and that stores the value of the

SimpleTypeVariable

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 41 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 hasDataType (range datatype: rdf:PlainLiteral)

This Data Property contains the datatype of the SimpleTypeVariable as text string

 hasDataRestriction (range datatype: rdf:PlainLiteral)

This Data Property contains a restriction of value of the the SimpleTypeVariable

Superclass-subclass Relationships

This Class is sub-class of:

 Variable

This Class is super-class of:

 OperationState

Restrictions

 none

6.2 Object Properties

6.2.1 Void

6.2.2 Void

6.2.3 Object Property: consistsOf

Description

 A Device can consist of (i.e. be composed) of several (sub-) Devices

Domain Class

 Device

Range Class

 Device

6.2.4 Object Property: describes

Description

 A Variable describes an Aspect (a quality or kind)

Domain Class

 Variable

Range Class

 Aspect

6.2.5 Object Property: exposesCommand

Description

 A -machine interpretable- Operation or an Input/OutputDataPoint of a Service exposes a -human

understandable- Command to a network.

Domain Class

 Operation

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 42 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Range Class

 Command

6.2.6 Object Property: exposesFunctionality

Description

 A Service exposes a Functionality to the network and makes it discoverable, registerable and remotely

controllable in the network.

Domain Class

 Service

Range Class

 Functionality

6.2.7 Object Property: hasCommand

Description

 A Functionality of a Device can be influenced/observed by a human user through the Commands that this

Functionality has and that are offered to the user

Domain Class

 Functionality

Range Class

 Command

6.2.8 Object Property: hasFunctionality

Description

 In order to accomplish its task, a Device performs one or more Functionalities

Domain Class

 Device

Range Class

 Functionality

6.2.9 Object Property: hasInput

Description

 An Operation of a Service of the Device or a Command of a Functionality of the Device can have

OperationInput data.

Domain Class

 Operation

 Command

Range Class

 OperationInput

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 43 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.10 Object Property: hasInputDataPoint

Description

 A Service or an Operation of a Service of the Device can have InputDataPoints. Communicating entities write

data into InputDataPoints and the Device retrieves the data at times according to an internal schedule.

An InputDataPoint can also contain the data that are used as input to an Operation.

Domain Class

 Operation

 Service

Range Class

 InputDataPoint

6.2.11 Object Property: hasMetaData

Description

 A Variable can have MetaData (like units, precision-ranges, etc.)

Domain Class

 Variable

Range Class

 MetaData

6.2.12 Void

6.2.13 Object Property: hasOperation

Description

 A Service communicates by means of Operations over the network to transmit data to/from other devices

Domain Class

 Service

Range Class

 Operation

6.2.14 Object Property: hasOperationState

Description

 An Operation may have an OperationState that is exposed

Domain Class

 Operation

Range Class

 OperationState

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 44 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.15 Void

6.2.16 Object Property: hasOutput

 An Operation of a Service of the Device or a Command of a Functionality of the Device can have

OperationOutput data

Domain Class

 Operation

 Command

Range Class

 OperationOutput

6.2.17 Object Property: hasOutputDataPoint

Description

 A Service or an Operation of a Service of the Device can have OutputDataPoints. The Device writes data into

OutputDataPoints at times according to an internal schedule and the communicating entitis retrieves the data.

An OutputDataPoint can also contain the data that are created as ouput of an Operation.

Domain Class

 Operation

 Service

Range Class

 OutputDataPoint

6.2.18 Object Property: hasService

Description

 The Functionalities of a Device are exposed in the network as Services of the Device

Domain Class

 Device

Range Class

 Service

6.2.19 Object Property: hasSubStructure

Description

 A structured Variable can be composed of (sub-)Variables

Domain Class

 Variable

Range Class

 Variable

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 45 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.2.20 Object Property: hasThingProperty

Description

 A Thing may have properties that can be described by Values

Domain Class

 Thing

Range Class

 Value

6.2.21 Object Property: hasThingRelation

Description

 A Thing may have relations to itself or to other Things

Domain Class

 Thing

Range Class

 Thing

6.2.22 Void

6.2.23 Void

6.2.24 Void

6.2.25 Object Property: isPartOf

Description

 An InterworkedDevice consist a part of an AreaNetwork

Domain Class

 InterworkedDevice

Range Class

 AreaNetwork

6.2.26 Object Property: refersTo

Description

 A Functionality of a Device can refer to a certain Aspect (a quality or kind) that is measured or controlled by

that Functionality.

e.g. a temperature sensor would refer to the Aspect "Temperature" that it measures

Domain Class

 Functionality

Range Class

 Aspect

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 46 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.3 Data Properties

6.3.1 Data Property: hasDataType

Note that in the pesent document the name space identifier for:

o 'http://www.w3.org/2001/XMLSchema' shall be referred to using the prefix: xsd

o 'http://www.w3.org/2002/07/owl' shall be referred to using the prefix: owl

o 'http://www.w3.org/1999/02/22-rdf-syntax-ns' shall be referred to using the prefix: rdf

Description

 This Data Property specifies the data type of the SimpleTypeVariable as URI

Domain Class

 SimpleTypeVariable

Range Datatype

 xsd:anyURI

Permissible URIs are:

 for Numbers types

(possible restrictions: xsd:minInclusive, xsd:maxInclusive, xsd:minExclusive, xsd:maxExclusive):

- owl:real

- owl:rational

- xsd:decimal

- xsd:integer

- xsd:nonNegativeInteger

- xsd:nonPositiveInteger

- xsd:positiveInteger

- xsd:negativeInteger

- xsd:long

- xsd:int

- xsd:short

- xsd:byte

- xsd:unsignedLong

- xsd:unsignedInt

- xsd:unsignedShort

- xsd:unsignedByte

 for PlainLiteral - contains all String types

(possible restrictions: xsd:length, xsd:minLength, xsd:maxLength, xsd:pattern, rdf:langRange):

- rdf:PlainLiteral

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 47 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 for String types

(possible restrictions: xsd:length, xsd:minLength, xsd:maxLength, xsd:pattern):

- xsd:string

- xsd:normalizedString

- xsd:token

- xsd:language

- xsd:Name

- xsd:NCName

- xsd:NMTOKEN

 for Boolean Values (no restrictions):

- xsd:boolean

 for Binary Data types

(possible restrictions: xsd:minLength, xsd:maxLength, xsd:length):

- xsd:hexBinary

- xsd:base64Binary

 for IRIs

(possible restrictions: xsd:minLength, xsd:maxLength, xsd:length, xsd:pattern):

- xsd:anyURI

 for Time Instants

(possible restrictions: sd:minInclusive, xsd:maxInclusive, xsd:minExclusive, xsd:maxExclusive):

- xsd:dateTime

- xsd:dateTimeStamp

 for Literals:

- rdf:XMLLiteral

6.3.2 Data Property: hasDataRestriction

6.3.2.0 General description

Description

 This Data Property specifies the restrictions on the data type of the SimpleTypeVariable.

Domain Class

 SimpleTypeVariable

Range Datatype

 rdf:PlainLiteral

The Data Property "hasDataRestriction" shall always be sub-classed as one of the following specializations.

The range of a sub-classed Data Property "hasDataRestriction" shall be instantiated as the value restricting the data. E.g.

a value 100 in the range of Data Property: hasDataRestriction_minInclusive specifies that the SimpleTypeVariable can

only take values greater or equal to 100.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 48 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

6.3.2.1 Data Property: hasDataRestriction_minInclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.2.2 Data Property: hasDataRestriction_maxInclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.2.3 Data Property: hasDataRestriction_minExclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.2.4 Data Property: hasDataRestriction_maxExclusive

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.2.5 Data Property: hasDataRestriction_length

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.2.6 Data Property: hasDataRestriction_minLength

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.2.7 Data Property: hasDataRestriction_maxLength

For applicability of this sub-class see of data property: hasDataRestriction clause 6.3.1 Data Property:

hasDataType

6.3.2.8 Data Property: hasDataRestriction_pattern

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.2.9 Data Property: hasDataRestriction_langRange

For applicability of this sub-class of data property: hasDataRestriction see clause 6.3.1 Data Property:

hasDataType

6.3.3 Data Property: hasValue

Description

 This data property contains the value of the Variable if that value is part of the semantic description and is not

contained in a different resource (identified by the oneM2MTargetURI data property). Storing the value of a

Variable in a semantic description (i.e. as part of the RDF description in the semanticDescriptor resource) is

useful for values that are relatively static (e.g. the name of the manufacturer).

- Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of the two shall

be instantiated.

Domain Class

 SimpleTypeVariable

Range Datatype

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 49 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 rdfs: Literal

6.3.4 Data Property: netTechnologyCommunicationProtocol

Description

 Identifies a communication protocol (e.g. ZigBee_1_0)

Domain Class

 AreaNetwork

Range Datatype

 netTechnologyCommunicationProtocol rdf:PlainLiteral

6.3.5 Data Property: netTechnologyPhysicalStandard

Description

 netTechnologyPhysicalStandardIdentification of the physical properties of a Area Network technology (e.g.

IEEE_802_15_4_2003_2_4GHz).

Domain Class

 AreaNetwork

Range Datatype

 rdf:PlainLiteral

6.3.6 Data Property: netTechnologyProfile

Description

 netTechnologyProfileIdentification of a profile (e.g. ZigBee_HA) of a Area Network technology

Domain Class

 AreaNetwork

Range Datatype

 rdf:PlainLiteral

6.3.7 Data Property: oneM2MTargetURI

Description

 oneM2MTargetURI (range data type: rdfs: Literal)

This data property contains the URI of a oneM2M resource (<container> or <flexContainer>) through which

the oneM2M instantiation of the value of the Variable can be manipulated by the communicating entity. It can

contain an absolute address or an address relative to the <semanticDescriptor> resource that holds the RDF

description of the Variable.

That address could be e.g.:

- The value of the parentID for the <container> or <flexContainer> of a Input- or OutputDataPoint which

has child-resource of type <semanticDescriptor> that holds the RDF description of the DataPoint.

Domain Class

 Operation

 Variable

Range Datatype

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 50 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 rdfs:Literal

6.3.8 Data Property: oneM2MAttribute

Description

 This Data Property contains the name of the attribute of the oneM2M resource of type <flexContainer> or the

the child resource of the oneM2M resource of type <container> that is referenced with the

oneM2MTargetURI and that stores the value of the SimpleTypeVariable:

- if the resource-type of the oneM2M resource that is referenced with the oneM2MTargetURI is

<container> then this Data Property shall contain the text string "#latest".

Domain Class

 SimpleTypeVariable

Range Datatype

 rdf:PlainLiteral

6.3.9 Data Property: oneM2MMethod

Description

 This data property contains a oneM2M CRUD Method through which the oneM2M instantiation of the value

of the Variable can be manipulated by the communicating entity:

- It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of type

<container> or <flexContainer>. This applies to sub-classes: OperationOutput, OutputDatapoint,

ThingProperty and OperationState.

- It contains the string "CREATE" for updating the variable when the oneM2M resource is of type

<container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

- It contains the string "UPDATE" for updationg the variable when the oneM2M resource is of type

<flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

Domain Class

 Variable

 Operation

Range Datatype

 rdf:PlainLiteral

6.4 Annotation Properties

6.4.1 Annotation Property: resourceDescriptorLink

Description

 The resourceDescriptorLink annotation property is used to refer to a semanticDescriptor resource that

contains more information about its subject. Its subject may be any individual and the range shall be the data

literal or URI reference that represents the address of the semanticDescriptor:

- For a oneM2M instantiation of the Base Ontology the resourceDescriptorLink annotation property is

used to annotate instances that appear in the range of object properties. The URI points to the

semanticDescriptor that contains more information about the instance of that class.

NOTE: In OWL DL it is not allowed to define property axioms on annotation properties, i.e. it is not possible to

define a domain and a range within the ontology itself.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 51 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Domain Class

 owl:Thing

Range Datatype

 xsd:anyURI

7 Instantiation of the Base Ontology and external
ontologies to the oneM2M System

7.1 Instantiation rules for the Base Ontology

7.1.1 Instantiation of classes of the oneM2M Base Ontology and derived
external ontologies in the oneM2M System:

7.1.1.1 General on instantiating classes of the Base Ontology in the oneM2M
System

Clause 7.1.1 describes how the Base Ontonlogy shall be instantiated in the oneM2M Sytem.

NOTE 1: Apart from semantically describing oneM2M Solutions a standardized oneM2M instantiation of the Base

Ontology is also needed for the purpose of Interworking with full semantic mapping when the non-

oneM2M data model is described by a oneM2M compliant ontology as described in clause F.5 of

oneM2M TS-0001 [2]

NOTE 2: Other instantiations of the Base Ontology are permissible if interworking according to clause F.5 of

oneM2M TS-0001 [2] is not required.

Every instantiation of a class of the Base Ontology (or a sub-class thereof) shall be instantiated in a descriptor attribute

of a oneM2M resource of type <semanticDescriptor>. A <semanticDescriptor> resource may instantiate multiple

classes.

That <semanticDescriptor> resource shall:

a) Contain instantiations of classes in the RDF data [3] of its descriptor attribute:

- Every instance of a class shall be globally identified within the oneM2M Solution using the rdf:about

attribute that contains a URI (e.g. based on a MAC address of a Device) that is unique within the

oneM2M Solution.

NOTE 3: The choice of a suitable unique URI is out of scope of oneM2M.

b) Contain an Ontology-Ref attribute that identifies the class whose instantiation is described in the descriptor

attribute. Depending on the instantiation this is a class in the Base Ontology or a class of another ontology that

is a sub-class of (includes equals to) a class in the Base Ontology as defined in clause 5.1.2.2.

The <semanticDescriptor> shall also contain:

a) The instantiated Object Properties for which the instantiated class is the domain class.

b) The instantiated Data Properties for which the instantiated class is the domain class.

NOTE 4: Instantiations of the domain class and the range class of an object property may be contained in

<semanticDescriptor>different <semanticDescriptor> resources.

If the range class of an object property is instantiated in a <semanticDescriptor> resource that is different to the

<semanticDescriptor> resource in which the domain class is instantiated then the <semanticDescriptor> of the

instance of the domain class shall contain:

a) an instance of the resourceDescriptorLink annotation property that contains the URI of the semanticDescriptor

of the instance of the range class.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 52 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

For specific classes that are indicated in clause 7.1.1.2 (in particular class:OperationState and classes that are derived

from class:Variable) the values of Data Properties may be stored in the parent resource of that <semanticDescriptor>

instead of the RDF data [3] of the descriptor attribute.

Any class of a derived external ontology shall be either:

 a sub-class of a class of the Base Ontology; or

 the range class of some Object Property whose domain class is a class (e.g. class:Thing) or sub-class of the

Base Ontology.

If a class of a derived external ontology is a sub-class of a class of the Base Ontology then it shall be instantiated in the

same way as the class of the Base Ontology.

If a class of a derived external ontology is not a sub-class of the Base Ontology but is the range class of some Object

Property whose domain class is a class or sub-class of the Base Ontology then it shall be instantiated in the data of the

descriptor attribute of the <semanticDescriptor> child resource of the oneM2M resource that instantiates the sub-class

of the Base Ontology.

7.1.1.2 Instantiation of individual classes of the Base Ontology

An overview of the oneM2M resources for instantiating the classes of the oneM2M Base Ontology is shown in the

figure 21. Different colours indicate different resource types.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 53 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Device

hasService hasFunctionality

Operation
Input

refersTo

Controlling
Functionality

consistsOf

Operation
Output

Operation
State

hasOperation
State

exposes
Functionality

Interworked
Device

Thing
hasThingProperty

hasThingRelation
Thing

Property

is-a

is-a

Variable

Output
DataPoint

is-a

is-a

FunctionalityService

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta
Data

Area
Network

isPartOf

hasOutput hasInput

hasMetaData

describes

Measuring
Functionality

Input
DataPoint

exposes
Command

is-a

oneM2M resources for instantiating
the oneM2M Base Ontology

GET_
Input

DataPoint

is-a

SET_
Output

DataPoint

Variable

Aspect

hasOutput
DataPoint

hasInput
DataPoint

hasSub
Service

hasOutputDataPoint

is-a

hasInputDataPoint

Variable

hasSub
Structure

is-aSimpleType
Variable

Legend: oneM2M resource types

<flexContainer> specialization: genericInterworkingService

<flexContainer> specialization: genericInterworkingOperationInstance

<AE>, <container> or <flexContainer>

<container> or <flexContainer>

Figure 21: oneM2M instantiation of the Base Ontology

 The Device class of the oneM2M Base Ontology (or a sub-class thereof) shall be instantiated in the data of the

descriptor attribute of a resource of type <semanticDescriptor> that is a child resource of an <AE>.

 The Device instance is identified using the rdf:about attribute that contains a URI (e.g. the MAC address) that

is unique within the oneM2M Solution.

 The application logic (identified by its APP-ID of the Device instance is provided by the Application Entity

(AE) of that Device.

NOTE 1: The The resourceID of a <node> resource that stores the node specific information where this AE resides

is contained in the nodeLink attribute of the <AE> of the Device

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 54 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 The InterworkedDevice class of the oneM2M Base Ontology (or a sub-class) shall be instantiated in the data

of the descriptor attribute of a a resource of type <semanticDescriptor> that is a child resource of:

- an <AE> resource of its Interworking Proxy Application Entity (IPE); or, alternatively

- a <container> or <flexContainer> resource that is a child resource of the <AE> resource of its

Interworking Proxy Application Entity (IPE).

 The InterworkedDevice instance is identified using the rdf:about attribute that contains a URI (e.g. the device

identifier of the device in the interworked system) that is unique within the oneM2M Solution.

 The APP-ID of the <AE> that is the parent (or grand-parent) of the <semanticDescriptor> which contains an

instance of an InterworkedDevice, shall be the APP-ID of InterworkedDevice's IPE.

 The AreaNetwork class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> child resource of the oneM2M resource that instantiates the InterworkedDevice class:

- The Data Properties "anTechnologyCommunicationProtocol", "anTechnologyPhysicalStandard" and

"anTechnologyProfile" are instantiated in the descriptor attribute of the <semanticDescriptor> child

resource of the oneM2M resource that instantiates the InterworkedDevice class.

 The Service class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> child resource of a genericInterworkingService (specialization of <flexContainer>)

resource.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with

the letter "*" and the class name of the Service (e.g. 00:11:2F:74:2C:8F*MyService).

 The genericInterworkingService resource shall be a child resource of the (<AE>, <container> or

<flexContainer>) resource that contains the <semanticDescriptor> which instantiates the Device class. It

contains references to the <container> or <flexContainer> resources that represent Input- and/or

OutputDatapoints of the Service.

 The Functionality class (or sub-class) shall be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> child resource of the oneM2M resource that instantiates the Device class.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with

the letter "*" and the class name of the Functionality (e.g. 00:11:2F:74:2C:8F*MyFunctionality).

 The Command class (or sub-class) shall be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> child resource of the oneM2M resource that instantiates the Device class.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with

the letter "*" and the class name of the Command (e.g. 00:11:2F:74:2C:8F*MyCommand).

 The Operation class (or sub-classes) shall be instantiated in the descriptor attribute of the

<semanticDescriptor> child resource of a genericInterworkingOperationInstance (specialization of

<flexContainer>) resource.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with

the letter "*" and the class name of the Service, concatenated with the letter "*" and a combination of the class

name of the Operation with a number that makes the instance unique within its Service instance during the

operation's lifetime

(e.g. at a certain point in time a Service instance might have Operation instances with OperationInstances with

IDs:

- "00:11:2F:74:2C:8F*MyService*MyOperation1", "00:11:2F:74:2C:8F*MyService*MyOperation5",

- "00:11:2F:74:2C:8F*MyService*MyOtherOperation1",

- "00:11:2F:74:2C:8F*MyService*MyThirdOperation8").

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 55 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 The genericInterworkingOperationInstance resource shall be a child resource of the

genericInterworkingService resource that contains the <semanticDescriptor> which instantiates the Service

class:

- The range instance of Object Property "hasOperation"that links the instance of the Service to the instance

of the Operation shall be be annotated with an Annotation Property: resourceDescriptorLink

<semanticDescriptor>which shall contain a reference to the resource of type <semanticDescriptor> that

instantiates the Operation.

 The OperationInput and OperationOutput class (or sub-class) shall be instantiated in the data of the

descriptor attribute of the <semanticDescriptor> child resource of a <container> or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the OperationInstance

concatenated with the letter "*" and the class name of the OperationInput and OperationOutput

(e.g. 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*MyOperationOutput).

 The <container> or <flexContainer>, whose the <semanticDescriptor> child resource contains the instance of

the OperationInput or OperationOutput shall be a child resource of the genericInterworkingOperationInstance

resource:

- The range of an instantiation of Object Properties "hasInput" and "hasOutput" that link the instance of

the Operation to the instance of the OperationInput and OperationOutput shall be be annotated with an

Annotation Property: resourceDescriptorLink which shall contain a reference to the resource of type

<semanticDescriptor> that instantiates the OperationInput and OperationOutput.

 The InputDataPoint and OutputDataPoint class (or sub-class) shall be instantiated in the data of the

descriptor attribute of the <semanticDescriptor> child resource of a <container> or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the Device concatenated with

the letter "*" and the class name of the InputDataPoint or OutputDataPoint

(e.g. 00:11:2F:74:2C:8F*MyInputDataPoint)

 The <container> or <flexContainer> resource shall be a child resource of the (<AE>, <container> or

<flexContainer>) resource that contains the <semanticDescriptor> which instantiates the Device class.

- The range of an instantiation of Object Properties "hasInputDataPoint" and "hasOutputDataPoint" that

link the instance of a Service or Operation to the instance of the InputDataPoint and OutputDataPoint

shall be be annotated with an Annotation Property: resourceDescriptorLink which shall contain a

reference to the resource of type <semanticDescriptor> that instantiates the InputDataPoint and

OutputDataPoint.

 <semanticDescriptor>The OperationState class (or sub-class) shall be instantiated in the data of the

descriptor attribute of the <semanticDescriptor> child resource of the genericInterworkingOperationInstance

resource that is related via the "hasOperationState" Object Property.

 The instance is identified using the rdf:about attribute that contains the URI of the OperationInstance

concatenated with the letter "*" and "OperationState" (i.e. the class name of the OperationState).

(e.g. 00:11:2F:74:2C:8F*MyService*MyThirdOperation8*OperationState)

- The data property "oneM2MTargetURI" shall contain the URI of the

genericInterworkingOperationInstance resource

- The data property "oneM2MAttribute" shall ontain the value "OperationState" (i.e. the name of the

Attribute of the OperationState in the genericInterworkingOperationInstance resource)

 <semanticDescriptor>The Aspect class (or sub-classes) may be instantiated in the data of the descriptor

attribute of the <semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor>

child resource.

 The instance is identified using the using the rdf:about attribute that contains a URI that is unique within the

oneM2M Solution.

NOTE 2: The choice of a suitable unique URI is out of scope of oneM2M.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 56 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 The Thing class (or sub-classes) may be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor> child resource:

- The instance is identified using the using the rdf:about attribute that contains a URI that is unique within

the oneM2M Solution.

NOTE 3: The choice of a suitable unique URI is out of scope of oneM2M.

- The range of an instantiation of Object Property "hasThingRelation" that links the instance of the Thing

to the instance of a second Thing shall be be annotated with an Annotation Property:

resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor>

that instantiates the second Thing

NOTE 4: This reference could refer to Thing, or a Device (as a sub-class of Thing).

- The range of an instantiation of an Object Property "hasThingProperty" that links the instance of the

Thing to an instance of a ThingProperty shall be be annotated with an Annotation Property:

resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor>

that instantiates the ThingProperty<semanticDescriptor>.

 The TingProperty class (or sub-class) shall be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> of the Thing or of a separate <container> or <flexContainer>.

 The instance is identified using the rdf:about attribute that contains the URI of the Thing concatenated with

the letter "*" and the class name of the ThingProperty (e.g. [some out of scope Thing

URI]*MyThingProperty):

- If the TingProperty is a SimpleTypeVariable and contains in its data property "hasValue" the value of the

ThingProperty then it can be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> of the Thing.

- Otherwise the TingProperty shall be instantiated in the data of the descriptor attribute of a separate

<container> or <flexContainer> which shall be a child resource of the parent resource of

<semanticDescriptor> which instantiates the Thing class.

In this case the The range of an Object Property "hasThingProperty" that links an instance of a Thing to

the instance of the ThingProperty shall be be annotated with an Annotation Property:

resourceDescriptorLink which shall contain a reference to the resource of type <semanticDescriptor>

that instantiates the ThingProperty.

 The sub-classes of the Variable class shall be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> child resource of resources of a <container> or <flexContainer>.

If the Variable has a structure (if it is composed of (sub-)Variables) - i.e. it is not a SimpleTypeVariable then:

- The <semanticDescriptor> shall have instances of object property "hasSubStructure" and each instance

contains in its range an instance of a (sub-) Variable. If that (sub-)Variable is part of a different

<semanticDescriptor> resource then the The range of an object property "hasSubStructure" shall be

annotated with an annotation property: "resourceDescriptorLink" which shall contain a reference to the

resource of type <semanticDescriptor> that instantiates the (sub-)Variable.

- The<semanticDescriptor> shall contain an instance of data property "oneM2MTargetURI" which shall

contain the URI of the parent <container> or <flexContainer> resource.

- The<semanticDescriptor> shall have instances of the data property "oneM2MMethod" which indicates a

oneM2M CRUD Method through which the oneM2M instance of the value of the Variable can be

manipulated by the communicating entity:

 It contains the string "RETRIEVE" for retrieving the variable when the oneM2M resource is of

type <container> or <flexContainer>. This applies to sub-classes: OperationOutput,

OutputDatapoint, ThingProperty and OperationState.

 It contains the string "CREATE" for updating the variable when the oneM2M resource is of type

<container>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

 It contains the string "UPDATE" for updating the variable when the oneM2M resource is of type

<flexContainer>. This applies to sub-classes: OperationInput, InputDatapoint, ThingProperty.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 57 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 The sub-classes of the SimpleTypeVariable class shall be instantiated in the data of the descriptor attribute of

the <semanticDescriptor> child resource of resources of a <container> or <flexContainer>.

The data properties are the same as for instances of the Variable class.

In addition:

- The data property "hasValue" contains the value of the Variable if that value is part of the semantic

description and is not contained in a different resource (identified by the oneM2MTargetURI data

property).

NOTE 5: Storing the value of a Variable in a semantic description (i.e. as part of the RDF description in the

<semanticDescriptor> resource) is useful for values that are relatively static (e.g. the name of the

manufacturer).

NOTE 6: Data properties "hasValue" and "oneM2MTargetURI" are mutually exclusive. Only one of the two shall

be instantiated for a SimpleTypeVariable.

- If data property "oneM2MTargetURI" is instantiated then the data property "oneM2MAttribute" shall

also be instantiated and contain:

 In the case of a <flexContainer> the name of the Attribute of the SimpleTypeVariable in the

<flexContainer> resource).

 In the case of a <container> the value "#latest".

 The MetaData class (or sub-classes) may be instantiated in the data of the descriptor attribute of the

<semanticDescriptor> child resource of any resource type that allows a <semanticDescriptor> child resource.

 The instance is identified using the using the rdf:about attribute that contains a URI that is unique within the

oneM2M Solution.

7.1.2 Instantiation of Object Properties

Object properties relate an instance of domain class to an instance of the range class.

They shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> resource that instantiates

the domain class of the object property.

If the range class of an Object Property is instantiated in a different resource than the instantiation of the domain class

then the The range class of an Object Property shall be annotated with the Annotation Property: resourceDescriptorLink

which shall contain a reference to that resource.

7.1.3 Instantiation of Data Properties

Data properties shall be instantiated in the data of the descriptor attribute of the <semanticDescriptor> resource that

instantiates the domain class of the data property.

7.1.4 Instantiation of Annotation Properties

Annotation properties may be instantiated in the data of the descriptor attribute of any <semanticDescriptor> resource.

For a oneM2M instantiation of the Base Ontology the resourceDescriptorLink annotation property is used to annotate

the range of object properties with the URI of the <semanticDescriptor> that contains the instance (that holds the RDF

description of the instance) of the range class of the object property.

The resourceDescriptorLink annotation property is not part of the semantic description but is used to refer to a

<semanticDescriptor> resource that contains more information about its subject. It is resolved by combining the

content of the descriptor attributes of the <semanticDescriptor> resources before a semantic operation (e.g. SPARQL

query) is performed.

7.2 Common mapping principles between the Base Ontology
and external ontologies

The base ontology can be mapped to other external ontologies (e.g., SAREF, SSN, etc.). The following priciples are

applied for the mapping between ontologies:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 58 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 Principle 1 - Classes Mapping (owl:equivalentClass):

- Making the statement X owl:equivalentClass Y essentially means that two named classes are

synonymous, i.e. that all instances of class X are instances of class Y and vice versa.

- Using this principle, two classes specified in different ontologies are declared to be equivalent.

 Principle 2 - Properties Mapping (owl:equivalentProperty):

- The owl:equivalentProperty construct can be used to state that two properties have the same property

extension. Syntactically, owl:equivalentProperty is a built-in OWL property with rdf:Property as both

its domain and range.

- Using this principle, if two properties are declared to be equivalent, two properties have the same

semantics or meaning.

 Principle 3 - Class Instances Mapping (owl:sameAs):

- The property owl:sameAs is used to state that two individuals (i.e. class instances) are the same.

- Using this principle, two class instances specified in different ontologies are declared to be equivalent.

 Principle 4 - SubClass Mapping (rdfs:subClassOf):

- The property rdfs:subClassOf is used to state that the class extension of a class description is a subset

of the class extension of another class description.

- Making the statement X rdfs:subClassOf Y essentially means that all instances of class X are instances

of class Y.

 Principle 5 – SubProperties Mapping (rdfs:subPropertyOf):

o The property rdfs:subPropertyOf is used to state that one property is the subproperty of another

property. Syntactically, the domain and range of rdfs:subPropertyOf are both of type rdf:Property.

o Making the statement X rdfs:subPropertyOf Y essentially means that all resources related by

property X are also related by property Y.

When using the above principles for the mapping between the Base Ontology and an external ontology, the hierarchy

and relations of the classes and properties defined in these two ontologies should be carefully considered since there

may exist some incompatible points after mapping due to the inheritance of the properties.

8 Functional specification of communication with the
Generic interworking IPE

8.1 Usage of oneM2M resources for IPE communication

8.1.1 General design principles (informative)

For Generic interworking the oneM2M resource types <AE>, <container>, <flexContainer>, and specializations of

<flexContainer>: genericInterworkingService and genericInterworkingOperationInstance are intended to hold data that

can be used for data exchange with the IPE.

For Generic interworking a convention is needed how the IPE uses these resources to communicate with other oneM2M

entities. This is described in the subsequent clauses.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 59 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Resources for RESTful communication style vs. procedure call (RPC) style:

A Generic interworking IPE needs to be able to communicate with non-oneM2M systems that implement some form of

RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.

On the other hand procedure calls can be better modelled using Operations (and their OperationInputs/-Outputs).

Also a combination of both (where Operations additionally receive input from InputDataPoints and/or write output into

OutputDataPoints) is possible.

Persistent resources vs. transient resources:

 Persistent resources are genericInterworkingService, <container>s and <flexContainer>s that contain data of

Services, Input- or OutputDataPoints. Services, Input- and OutputDataPoints of an Interworked Device usually

exist as long as the IPE enables the communication with the Interworked Device.

 Transient resources are genericInterworkingOperationInstances, <container>s and <flexContainer>s that

contain data of Operations, OperationInput or OperationOutput.

These resources are created and exist as long as the Interworked Device performs execution of an Operation

and receive the output data of the Operation. Once the output data have been deliverd to subscribed

communicating entities transient resources may be deleted by the IPE.

NOTE: While in general the present document assumes that semantic information can be made available (using

the <semanticDescriptor> resource) the mechanisms described here for IPE communication do not rely

on the existence of semanticDescriptors. This allows e.g. very simple devices to exchange their data in

"raw" form (e.g. as byte-fields that need to be interpreted by the communicating entity).

8.1.2 Parent-child and linking resource relationships

Figure 22 provides an overview of parent-child resource relationships that are used for communication with AEs (in

particular the IPE) in the context of Generic interworking.

It involves the:

 Persistent resource types:

- <AE>, <container> or <flexContainer> - for a oneM2M Device or an Interworked Device

- <container> - for an Input- or OutputDataPoint

- <flexContainer> - for an Input- or OutputDataPoint

- genericInterworkingService specialization of <flexContainer> - for a Service of a a oneM2M Device or

an Interworked Device

 Transient resource types:

- <container> - for OperationInput or OperationOutput data of an Operation

- <flexContainer> - for OperationInput or OperationOutput data of an Operation

- genericInterworkingOperationInstance specialization of <flexContainer> - for an Operation of a Service

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 60 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Device <AE>, <container> or <flexContainer> (persistent resource)

<semanticDescriptor>
child-resources

Input- / OutputDataPoint <container> (persistent resource)

Input- / OutputDataPoint <flexContainer> (persistent resource)

contentInstance … …
latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService (persistent resource)

child-resources

and / or

genericInterworkingOperationInstance (transient resource)

OperationInput / -Output <container> (transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …
latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>
[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor[Output_DataPoint_Links]

[Output-DataPoint_Links]
[Input -DataPoint_Links]

[Output_Links]
[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:
Persistent child resources
Transient child resources
Links

Figure 22: Parent-child and Link relationships in the context of Generic interworking

Parent-child relationships:

 An <AE> resource, required for representing a Device, is created by its AE.

Alternatively, in the case of an Interworked Device, the AE that is the generic interworking IPE may create

resources of type <container> or <flexContainer>, that represents the Interworked Device.

 Input- and Output DataPoints (<containers> and/or <flexContainers>) are created by the AE as child resources

of its (<AE>, <containers>, <flexContainers>) resource that represents the Device.

 Services (resources of specialization type genericInterworkingService of a <flexContainer>) are created by the

AE as child resources of its resource that represents the Device.

 OperationInstances (resources of specialization type genericInterworkingOperationInstance of a

<flexContainer>) are created by the AE or by the communicating entity as child resources of the

genericInterworkingService of the Service.

 OperationInput (<containers> and/or <flexContainers>) are created by the communicating entity as child

resources of the genericInterworkingOperationInstance of the Operation instance.

 OperationOutput (<containers> and/or <flexContainers>) are are created by the AE as child resources of the

genericInterworkingOperationInstance of the Operation instance.

 All of the above can contain a <semanticDescriptor> as child resource.

Link relationships:

 Services can contain links to:

- InputDataPoints (contained in the InputDataPointsLinks attribute)

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 61 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

- OutputDataPoints (contained in the ouputDataPointsLinks attribute)

 OperationInstances can contain links to:

- InputDataPoints (contained in the InputDataPointsLinks attribute)

- OutputDataPoints (contained in the ouputDataPointsLinks attribute)

- OperationInputs (contained in the inputLinks attribute)

- OperationOutputs (contained in the outputLinks attribute)

8.2 Specification of the IPE for Generic interworking

8.2.1 General functionality of a Generic interworking IPE

Generic interworking Interworking supports the interworking variant with full mapping of the semantic of the non-

oneM2M data model to Mca as indicated in clause F.2 of oneM2M TS-0001 [2].

The non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-

classes and sub-properties) from the oneM2M Base Ontology and may be available in a formal description language

(e.g. OWL).

A oneM2M compliant ontology can describe an external technology (e.g. ZigBee) for which a standardized

interworking with oneM2M is required or it could describe a model of consensus that is shared by large industry sector

(like SAREF, referenced in [i.2]) that facilitates the matching of existing assets (standards/protocols/datamodels/etc.).

An IPE that provides Generic interworking with a M2M Area Network shall instantiate the classes, object- and data

properties of the ontology describing the non-oneM2M data model of the M2M Area Network as oneM2M resources,

according to the instantiation rules of clause 7.1.

 Depending on the capabilities of the IPE and when the ontology describing the non-oneM2M data model is

made available as a formal description the IPE may access and parse the OWL file of the ontology to support

creation of the required oneM2M resources.

8.2.2 Interworked Device discovery

The IPE shall discover the devices in the non-oneM2M solution or, alternatively, they may be manually configured

in the IPE.

1. For each discovered Interworked Device in the non-oneM2M solution the IPE shall:

 either:

- create a <container> or <flexContainer> child resource of the IPE's <AE> resource for a Proxied Device

that represents the non-oneM2M Interworked Device in the oneM2M System; or

- in the case the IPE provides interworking with a single Interworked Device, the IPE may use it's own

<AE> resource for the Proxied Device that represents the non-oneM2M Interworked Device in the

oneM2M System.

2. For each discovered device in the non-oneM2M solution the IPE shall create the Input- and OutputDataPoints

(resource types <container> and/or <flexContainer>) and Services (resource type <flexContainer>

specialization: <genericInterworkingService>) as child resources of the resource of the Proxied Device.

3. The IPE shall create <semanticDescriptor>s as child resources of the Input- and OutputDataPoints and

Services.

4. The IPE shall subscribe to all created resources.

NOTE: Whether <AE>, <container> or <flexContainer> resource types are used to represent InterworkedDevices

and whether <container> or <flexContainer> resource types are used for input- and OutputDataPoints and

operationInputs/-Outputs is not specified and depends on configuration.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 62 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

8.2.3 Handling of DataPoints by the IPE

 When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point

to write an OutputDataPoint belonging to a Service of the device the IPE shall

o de-serialize the received data and, depending on the resource type of the OutputDataPoint

(<flexContainer> or <container>) shall

o UPDATE/(CREATE contentInstance) the OutputDataPoint resources of the related

genericInterworkingService with the output data.

 When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point

to read an InputDataPoint belonging to a Service of the device the IPE shall

o RETRIEVE data from the InputDataPoint resource of the related genericInterworkingService,

o serialize the data and

o return them to the non-oneM2M device.

 When the IPE is notified by the CSE that a <flexContainer> or <container> child-resource of the Proxied

Device has been changed the IPE shall

o check to which Service the <flexContainer> or <container> resource belongs by checking if one of

the inputDataPointLinks references the resource as InputDataPoint.

o read the data of the changed resource and

o invoke the Service, parameterized with data of the InputDataPoint, via the non-oneM2M reference

point in the interworked non-oneM2M device.

8.2.4 Handling of Operations by the IPE

When the IPE receives notification from the CSE about creation of an OperationInstance resource (resource type

genericInterworkingOperation) as child resource of a genericInterworkingService resource the IPE shall perform the

following actions:

1. The IPE shall RETRIEVE the input data of the operation (contained in the resources to which the attributes

inputLinks and InputDataPoint Links of genericInterworkingOperation provide links).

2. the IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data received by

application".

3. the IPE shall invoke the related operation together with their input data in the non-oneM2M device via the

non-oneM2M reference point.

4. the IPE shall handle the result of the operation, received from the Interworked Device via the non-oneM2M

reference point:

 If the the non-oneM2M device is capable of processing the operation (i.e. no error is reported over the

non-oneM2M reference point) then:

a) The IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data

transmitted to interworked device".

b) The IPE shall UPDATE the expirationTime attribute to an appropriate value that allows the

Interworked Device to execute the operation and allows the subscribed communicating entities to

get notified and potentially retrieve the results.

c) When the IPE receives output data from the operation in the non-oneM2M device via the non-

oneM2M reference point the IPE shall de-serialize these data and update, depending on the

operation specification, the operationOutput resources and/or the OutputDataPoint resources with

the output data:

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 63 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

- When the received output data from the operation contain a state indication (according to the

OperationState class of the ontology) then the IPE may UPDATE the operationState attribute

with the value received in the state indication.

- When the received output data from the operation contains no state indication (according to

the OperationState class of the ontology) then the IPE shall UPDATE the operationState

attribute with the value "operation ended".

- In case the operation contains no output data and the non-oneM2M reference point does not

contain a state indication then the IPE shall UPDATE the operationState attribute of the

OperationInstance with the value "operation ended".

When an error occurs during communication over the non-oneM2M reference point then the IPE

shall UPDATE the operationState attribute with the value "operation failed".

 If the non-oneM2M device is not capable of processing the operation (i.e. an error is reported over the

non-oneM2M reference point) then the IPE shall DELETE the OperationInstance resource.

When the IPE receives unsolicited data through an operation in the non-oneM2M device via the non-oneM2M reference

point (e.g. when the device reacts on some external event and publishes related output data) the IPE shall de-serialize

these data and perform the following actions.

1) Creation of OperationOutputs and OutputDataPoints of the Operation by the IPE:

 For all Operation parameters that are (transient) OperationOutputs the IPE shall CREATE

<container>s and/or <flexContainer>s that contain the data for the OperationOutputs of the

Operation.

 For all Operation parameters that are (persistent) OutputDataPoints the IPE shall CREATE

<contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data for the

OutputDataPoints of the Operation. outputDataPointLinks

2) The IPE shall CREATE a genericInterworkingOperationInstance resource as child-resource of the

genericInterworkingService resource that represents the Service of the Operation.

The IPE shall:

a) make the <container>s and/or <flexContainer>s that contain the data for the OperationOutput child-

resources of the genericInterworkingOperationInstance resource;

b) set the outputDataPointLinks attribute (with the OutputDataPoint names, links to <container>s and/or

<flexContainer>s for the OutputDataPoints and, if needed, attributeNames);

c) set the outputLinks attribute attribute (with the OperationOutput names, links to <container>s and/or

<flexContainer>s for the OperationOutput, and if needed attributeNames).

3) The IPE shall CREATE <semanticDescriptor> resources to all created resources and fill the descriptor

attribute with RDF data.

4) The IPE shall set the expirationTime attribute of the genericInterworkingOperationInstance to an appropriate

value that allows communicating entities (that had subscribed to the genericInterworkingService resource and

were notified about the creation of the genericInterworkingOperationInstance resource) to retrieve the

genericInterworkingOperationInstance and its OperationOutput child-resources.

5) The IPE shall set the operationState attribute of the genericInterworkingOperationInstance resource

 When the received output data from the non-oneM2M device operation contains a state indication

(according to the OperationState class of the ontology) then the IPE may UPDATE the operationState

attribute with the value received in the state indication.

 When the received output data from the non-oneM2M device operation contain no state indication

(according to the OperationState class of the ontology) then the IPE shall UPDATE the operationState

attribute with the value "operation ended".

At periodic, implementation specific, times the IPE shall check the expirationTime attribute of all Operation resources

of all Proxied Devices and DELETE expired Operations and their OperationInputs and -Outputs.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 64 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

8.2.5 Removing Devices.

When a Interworked Device in the non-oneM2M solution becomes unavailable the IPE shall delete the resource for its

Proxied Device and all its related DataPoint, Service and Operation resources.

8.3 Specification of the behavior of a communicating entity in
message flows between IPE and the communicating entity

8.3.1 Preconditions on the communicating entity

1) Any communicating entity, that wants to communicate with:

a. an interworked non-oneM2M device via the IPE needs to be subscribed to the <AE> resource of the

IPE to get notified about resources for Proxied Device that are created by the IPE to represent

interworked non-oneM2M devices that were discovered by the IPE.

b. a specific interworked non-oneM2M device via the IPE needs to be subscribed to the <container> or

<flexContainer> or <AE> resource that had been created by the IPE as a related Proxied Device to

represent the interworked non-oneM2M device.

2) The communicating entity needs also be subscribed to

a. the genericInterworkingService resources that have been created by the IPE as child resourses of the

resource of the Proxied Device.

b. <container> or <flexContainer> resources that have been created by the IPE as child resourses of the

Proxied Device to represent (persistent) Input- or OutpuDataPoints of the genericInterworkingService

resources.

8.3.2 Flow from the communicating entity to the IPE using
InputDataPoints of a Service

8.3.2.1 Flow from the communicating entity to the IPE using a <container> type
InputDataPoint

1) When the communicating entity wants to invoke a Service in the interworked non-oneM2M device it shall

determine the genericInterworkingService resource that is related to the Service by checking the serviceName

attribute, which contains the class name of the Service in the related compliant ontology.

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint

from the InputDataPoint Links attribute of the genericInterworkingService resource, which contains references

to the InputDataPoints of the Service as a list of triples.

The first field of the triple identifies the InputDataPoint in the related compliant ontology, the second field

contains the URI of the resource (container or flexContainer) that holds the data of the InputDataPoint.

The third field indicates whether the InputDataPoint contains simple data or the InputDataPoint contains

complex data:

- If the InputDataPoint is of type <container> and contains simple data the third field contains the text

string "latest".

- If the InputDataPoint is of type <container> and contains complex data the third field is empty.

3) The communicating entity shall update the InputDataPoint:

 If the InputDataPoint contains simple data then the communicating entity CREATEs a new

<contentInstance> of the InputDataPoint.

 If the InputDataPoint contains complex data, (contained in child-resources: <container> or

<flexContainer>) then the communicating entity UPDATEs the child-<flexContainer>s and/or

CREATEs new <contentInstance>s of child-<container>s as needed.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 65 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 If the InputDataPoint contains complex data the communicating entity may also CREATE or

DELETE child-resources of the InputDataPoint <container> as needed. In this case the

communicating entity shall create <subscription>s to all created resources that notify the IPE.

When a new child resource of the InputDataPoint resource is created then the communicating entity

may optionally also create a <semanticDescriptor> child resource of the newly created resource:

a) The descriptor attribute of the <semanticDescriptor> shall be updated with the RDF description

of the created instance of class:Variable

b) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of

the "hasSubStructure" object property

c) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of

the resourceDescriptorLink annotation property with the URI of the new <semanticDescriptor>

resource.

 If only child-resources of an InputDataPoint have changed the communicating entity shall issue a null

UPDATE (i.e. containing no attributes) on the InputDataPoint on order to make sure the IPE gets

notified by the CSE that the InputDataPoint or its child-resources have been changed.

8.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type
InputDataPoint

1) The communicating entity determines the genericInterworkingService resource as in clause 8.3.1.1.

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint

as in clause 8.3.1.1.

In the case of a <flexContainer> type InputDataPoint the third field indicates whether the InputDataPoint

contains simple data - in this case the third field contains a text string with the name of the name of the

[customAttribute] (which is identical to the name of the InputDataPoint) - or the InputDataPoint contains

complex data - in this case the third field is empty.

3) The communicating entity updating the InputDataPoint:

a) If the InputDataPoint contains simple data then the communicating entity UPDATEs the InputDataPoint

with a new value for the [customAttribute].

b) If the InputDataPoint contains complex data then the communicating entity shall behave as in

clause 8.3.2.1 step 3).

8.3.3 Flow from the IPE to the communicating entity using
OutputDataPoints of a Service

When the communicating entity is notified by the CSE that a child-resource of the Proxied Device has been changed the

IPE shall

c. Identify the Service to which the <flexContainer> or <container> resource belongs by checking

which one of the genericInterworkingService resources contains an outputDataPointLinks attribute

that references the resource as OutputDataPoint.

d. read the data of the <flexContainer> or <container> resource (and possibly its child-resources) and

use them in the context of the service to which they belong.

8.3.4 Flow from the communicating entity to the IPE using Operations of a
Service

1) If the Operation is parameterized by input parameter that are (transient) OperationInputs the communicating

entity shall CREATE <container>s and/or <flexContainer>s that contain the data for the OperationInputs of

the Operation.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 66 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

2) If the Operation is parameterized by input parameter that are (persistent) InputDataPoints the communicating

entity may CREATE <contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data

for the InputDataPoints of the Operation.

3) The communicating entity shall CREATE a genericInterworkingOperationInstance resource as child-resource

of the genericInterworkingService resource that represents the Service of the Operation.

The communicating entity shall:

- make the <container>s and/or <flexContainer>s that contain the data for the OperationInput child-

resources of the genericInterworkingOperationInstance resource;

- set the inputDataPointLinks attribute (with the InputDataPoint names, links to <container>s and/or

<flexContainer>s for the InputDataPoints, and if needed Attributenames);

- set the inputLinks attribute attribute (with the OperationInput names, links to <container>s and/or

<flexContainer>s for the OperationInput, and if needed Attributenames).

4) The communicating entity may CREATE <semanticDescriptor> resources to all created resources and fill the

descriptor attribute with RDF data.

5) The communicating entity shall CREATE a subscription to the genericInterworkingOperationInstance

resource in order to get notified about changes of the OperationState and potential creation of OperationOutput

<container> and/or <flexContainer> child resources of the genericInterworkingOperationInstance.

6) Since the IPE has subscribed to the genericInterworkingService resource it gets notified about the creation of a

genericInterworkingOperationInstance child-resource and retrieves the resource and its OperationInputs and

InputDataPoints.

8.3.5 Flow from the IPE to the communicating entity using Operations of a
Service

Since the communicating entity is subscribed to the genericInterworkingService resources of the Proxied Device it

gets notified by the CSE when the IPE creates a genericInterworkingOperationInstance as child-resource of the

genericInterworkingService.

1) The communicating entity needs to retrieve the genericInterworkingOperationInstance

2) As the genericInterworkingOperationInstance contains outputDataPointLinks and outputLinks attributes

the communicating entity receives information about output data of the operation and can retrieve the

referenced <container> and/or <flexContainer> resources

9 FlexContainer specializations for Generic
interworking

9.1 Introduction

For Ontology based Interworking two specialization types of <flexContainer> are needed: genericInterworkingService

and genericInterworkingOperationInstance.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 67 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

9.2 Resource Type genericInterworkingService

Resource type genericInterworkingService is used for grouping Input- and/or Output Datapoints and/or

OperationInstances of a Service. For Ontology based Interworking Input- and/or Output Datapoints and/or

OperationInstances can be grouped as a Service with respect to their usage within a single Device.

A resource of type genericInterworkingService contains references to the <container> or <flexContainer> resources that

represent Input- and/or Output Datapoints of the Service in the inputDataPointLinks and outputDataPointLinks

attributes.

A resource of type genericInterworkingService is also the parent resource of genericInterworkingOperationInstances for

that Service.

A resource of type genericInterworkingService can be a child-resource of:

a) AE, container, flexContainer since Ontology based Interworking allows these three resource types to represent

Devices and InterworkeDevices.

b) genericInterworkingService since Ontology based Interworking allows Services to contain (sub-)Services.

<subscription>
0..n

[genericInterworkingService]

0..1
creator

0..1
ontologyRef

<semanticDescriptor>
0..n

serviceName

1
containerDefinition

inputDataPointLinks

1

1

outputDataPointLinks
1

[genericInterworking

Service]

0..n

[genericInterworking

OperationInstance]

0..n

Figure 23: Structure of [genericInterworkingService] resource

The [genericInterworkingService] resource shall contain the child resource specified in table 3.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 68 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 3: Child resources of [genericInterworkingService] resource

Child Resources of
[genericInterworking

Service]

Child Resource
Type

Multiplicity Description
[genericInterworkingServiceAnnc]

Child Resource Type

semanticDescriptor <semanticDescriptor
>

0..n See clause 9.6.30
in TS-0001 [2]

<semanticDescriptor>,
<semanticDescriptorAnnc>

[variable] <subscription> 0..n See clause 9.6.8
in TS-0001 [2]

<subscription>

[variable] <flexContainer>
specialization:

[genericInterworking
Service]

0..n A Service may be
composed of (sub)-
Services that are
contained as child-
resources

[genericInterworkingService]
[genericInterworkingServiceAnnc]

[variable] <flexContainer>
specialization:

[genericInterworking
OperationInstance]

0..n See clause 9.3
For each
invocation of an
operation of a
Service a child-
resource of type
[genericInterworkin
gOperationInstanc
e] is created. When

the operation is
finished this child-
resource is deleted
by the IPE

[genericInterworkingOperationInstance]
[genericInterworkingOperationInstance

Annc]

The [genericInterworkingService] resource shall contain the attributes specified in table 4.

Table 4: Attributes of [genericInterworkingService] resource

Attributes of

[genericInterworking
Service]

Multiplicity
RW/
RO/
WO

Description

[genericInterw
orkingService

Annc]
Attributes

resourceType 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

resourceID 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

resourceName 1 WO See clause 9.6.1.3 in TS-0001 [2] NA

parentID 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

accessControlPolicyIDs 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] MA

labels 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] MA

stateTag 1 RO See clause 9.6.1.3 in TS-0001 [2] OA

announceTo 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] NA

announcedAttribute 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] NA

dynamicAuthorizationCons
ultationIDs

0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] OA

containerDefinition 1 WO See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be "org.onem2m.

genericInterworkingService”

MA

creator 0..1 RO See clause 9.6.35 in TS-0001 [2] NA

ontologyRef 0..1 RW See clause 9.6.35 in TS-0001 [2] OA

serviceName 1 RW The attribute contains the name of the
Service. The name of the Service is
given by the class name of that Service
in the used ontology (which needs to be
derived from the Base Ontology)

MA

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 69 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attributes of
[genericInterworking

Service]

Multiplicity
RW/
RO/
WO

Description

[genericInterw
orkingService

Annc]
Attributes

inputDataPointLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following fields:

1. A text string with the name of an
inputDatapoint of the Service
2. A URI of the resource (container or
flexContainer) that holds the data of the
inputDataPoint
3. A field for identifying simple-type data

If the inputDataPoint contains simple-
type data then

i. If the resource type of the
inputDataPoint is <container> then
this field shall contain the text string
"latest”
ii. If the resource type of the
inputDataPoint is <flexContainer>
then this field shall contain the name
of the [customAttribute] (which is
identical to the name of the
inputDataPoint)

If the inputDataPoint contains complex-
type data then this field shall remain
empty.

MA

outputDataPointLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following fields:

1. A text string with the name of an
outputDatapoint of the Service
2. A URI of the resource (container or
flexContainer) that holds the data of the
outputDataPoint
3. A field for identifying simple-type data

If the outputDataPoint contains simple-
type data then

i. If the resource type of the
outputDataPoint is <container> then
this field shall contain the text string
"latest”
ii. If the resource type of the
outputDataPoint is <flexContainer>
then this field shall contain the name
of the [customAttribute] (which is
identical to the name of the
outputDataPoint)

Otherwise, if the outputDataPoint
contains complex-type data then this field
shall remain empty.

MA

9.3 Resource Type genericInterworkingOperationInstance

In the context of Ontology based Interworking resources of resource type genericInterworkingOperationInstance are

created as child-resources of a Service by the CSE. The originator of a request can be:

 the AE (for AE initiated communication for notifying communicating entities);

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 70 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 a communicating entity (to notify the AE about an operation that needs to be performed by the AE and to

receive output back from the AE).

After the expirationTime the AE may delete the operationInstance and all linked operationInput and operationOutput

resources (contained in the references in attributes: inputLinks and outputLinks)

An OperationInstance resource holds in its attributes inputDataPointLinks and inputLinks references to resources of

type <container> and <flexContainer> from which the AE should retrieve input of the operation. Similarly the

attributes outputDataPointLinks and outputLinks references to resources of type <container> and <flexContainer> to

which the AE should write its output of the operation.

<subscription>
0..n

[genericInterworking

OperationInstance]

0..1
creator

0..1
ontologyRef

<semanticDescriptor>
0..n

operationName

1
containerDefinition

inputDataPointLinks

1

1

outputDataPointLinks
1

inputLinks
1

outputLinks
1

operationState
1

expirationTime
1

Figure 24: Structure of [genericInterworkingOperationInstance] resource

The [genericInterworkingOperationInstance] resource shall contain the child resource specified in table 5.

Table 5: Child resources of [genericInterworkingOperationInstance] resource

Child Resources of
[genericInterworkin
gOperationInstance]

Child Resource Type Multiplicity Description
[genericInterworkingOperationInstan

ceAnnc]
Child Resource Type

semanticDescriptor <semanticDescriptor> 0..n See clause 9.6.30
in TS-0001 [2]

<semanticDescriptor>,
<semanticDescriptorAnnc>

[variable] <subscription> 0..n See clause 9.6.8
in TS-0001 [2]

<subscription>

The [genericInterworkingOperationInstance]resource shall contain the attributes specified in table 6.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 71 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table 6: Attributes of [genericInterworkingOperationInstance] resource

Attributes of
[genericInterworking
OperationInstance]

Multiplicity
RW/
RO/
WO

Description

[genericInterwork
ingOperation

InstanceAnnc]
Attributes

resourceType 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

resourceID 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

resourceName 1 WO See clause 9.6.1.3 in TS-0001 [2] NA

parentID 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

expirationTime 1 RW See clause 9.6.1.3 in TS-0001 [2]
This attribute shall contain the time
after which the operationInstance and
its operationInput and operationOutput
resources may be deleted by the AE.
If an AE got notified about creation of
the operationInstance and if the AE
accepts to process the operation (i.e.
does not immediately delete the
operationInstance) the expirationTime
is set by the AE.

MA

accessControlPolicyIDs 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] MA

labels 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] MA

creationTime 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

lastModifiedTime 1 RO See clause 9.6.1.3 in TS-0001 [2] NA

stateTag 1 RO See clause 9.6.1.3 in TS-0001 [2] OA

announceTo 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] NA

announcedAttribute 0..1 (L) RW See clause 9.6.1.3 in TS-0001 [2] NA

dynamicAuthorizationCons
ultationIDs

0..1 (L) RW See clause 9.6.1.3. in TS-0001 [2] OA

containerDefinition 1 WO See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be "org.onem2m.

genericInterworkingOperationInstanc

e”

MA

creator 0..1 RO See clause 9.6.35 in TS-0001 [2] NA

ontologyRef 0..1 RW See clause 9.6.35 in TS-0001 [2] OA

operationName 1 RW The attribute contains the name of the
Operation. The name of the Operation
is given by the class name of that
Operation in the used ontology (which
needs to be derived from the Base
Ontology)

MA

operationState 1 RW This attribute contains a text string that
indicates how far the operation has
progressed.
specified values are:
o "data_received_by_application”
o "operation_ended”
o "operation_failed”
o
 "data_transmitted_to_interworked_
device”
Additional, application specific values
for the text string of the operationState
attribute are permissible.

MA

inputDataPointLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following
fields:

1. A text string with the name of an
inputDatapoint of the
operationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of
the inputDataPoint

MA

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 72 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attributes of
[genericInterworking
OperationInstance]

Multiplicity
RW/
RO/
WO

Description

[genericInterwork
ingOperation

InstanceAnnc]
Attributes

3. A field for identifying simple-type
data

If the inputDataPoint contains simple-
type data then

i. If the resource type of the
inputDataPoint is <container> then
this field shall contain the text
string "latest”
ii. If the resource type of the
inputDataPoint is <flexContainer>
then this field shall contain the
name of the [customAttribute]
(which is identical to the name of
the inputDataPoint)

If the inputDataPoint contains
complex-type data then this field shall
remain empty.

outputDataPointLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following
fields:

1. A text string with the name of an
outputDatapoint of the
OperationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of
the outputDataPoint
3. A field for identifying simple-type
data

If the outputDataPoint contains simple-
type data then

i. If the resource type of the
outputDataPoint is <container>
then this field shall contain the text
string "latest”
ii. If the resource type of the
outputDataPoint is <flexContainer>
then this field shall contain the
name of the [customAttribute]
(which is identical to the name of
the outputDataPoint)

If the outputDataPoint contains
complex-type data then this field shall
remain empty.

MA

inputLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following
fields:

1. A text string with the name of an
operationInput of the
operationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of
the operationInput
3. A field for identifying simple-type
data

MA

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 73 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Attributes of
[genericInterworking
OperationInstance]

Multiplicity
RW/
RO/
WO

Description

[genericInterwork
ingOperation

InstanceAnnc]
Attributes

If the operationInput contains simple-
type data then

i. If the resource type of the
operationInput is <container> then
this field shall contain the text
string "latest”
ii. If the resource type of the
operationInput is <flexContainer>
then this field shall contain the
name of the [customAttribute]
(which is identical to the name of
the operationInput)

If the Input contains complex-type data
then this field shall remain empty.

outputLinks 0..1 RW This attribute contains a list of triples,
each triple containing the following
fields:

1. A text string with the name of an
operationOutput of the
operationInstance
2. A URI of the resource (container or
flexContainer) that holds the data of
the outputDataPoint
3. A field for identifying simple-type
data

If the operationOutput contains simple-
type data then

i. If the resource type of the
operationOutput is <container>
then this field shall contain the text
string "latest”
ii. If the resource type of the
operationOutput is <flexContainer>
then this field shall contain the
name of the [customAttribute]
(which is identical to the name of
the operationOutput)

If the operationOutput contains
complex-type data then this field shall
remain empty.

MA

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 74 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Annex A (normative):
OWL representation of Base Ontology

The OWL representation of Base Ontology is provided in a separate document.

The Base Ontology is available at the web page:

 http://www.onem2m.org/ontology/Base_Ontology

which contains the latest version of the (RDF/XML) OWL representation of the ontology under the URL:

 http://www.onem2m.org/ontology/Base_Ontology/oneM2M_base_ontology.owl

and individual versions of the (RDF/XML) OWL representation of the ontology under the URL:

 http://www.onem2m.org/ontology/Base_Ontology/oneM2M_base_ontology-vx_y_z.owl

(where x,y,z signify the version numbering for major- minor- and editorial changes of the base ontology).

e.g. http://www.onem2m.org/ontology/Base_Ontology/oneM2M_base_ontology-v0_5_0.owl.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 75 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Annex B (informative):
Mappings of selected external ontologies to the Base
Ontology

B.1 Mapping of SAREF

B.1.1 Introduction to SAREF

The following description of the SAREF ontology is copied from the following site:

https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology.

It provides an introduction to the scope and objectives of SAREF ontology:

"The Smart Appliances REFerence (SAREF) ontology is a shared model of consensus that facilitates the matching of

existing assets (standards/protocols/datamodels/etc.) in the smart appliances domain. The SAREF ontology provides

building blocks that allow separation and recombination of different parts of the ontology depending on specific needs.

The starting point of SAREF is the concept of Device (e.g., a switch). Devices are tangible objects designed to

accomplish one or more functions in households, common public buildings or offices. The SAREF ontology offers a lists

of basic functions that can be eventually combined in order to have more complex functions in a single device. For

example, a switch offers an actuating function of type "switching on/off". Each function has some associated

commands, which can also be picked up as building blocks from a list. For example, the "switching on/off" is associated

with the commands "switch on", "switch off" and "toggle". Depending on the function(s) it accomplishes, a device can

be found in some corresponding states that are also listed as building blocks.

A Device offers a Service, which is a representation of a Function to a network that makes the function discoverable,

registerable and remotely controllable by other devices in the network. A Service can represent one or more functions.

A Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable, remotely

controllable by other devices in the network. A Service must specify the device that is offering the service, the

function(s) to be represented, and the (input and output) parameters necessary to operate the service.

A Device in the SAREF ontology is also characterized by an (Energy/Power) Profile that can be used to optimize the

energy efficiency in a home or office that are part of a building."

A formal description of the ontology is provided via this link: http://ontology.tno.nl/saref/

The following table B.1 provides a list of SAREF concepts - source

http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4 - SMART 2013-0077 - Smart Appliances -

Final Study Report_v1.0.pdf.

http://ontology.tno.nl/saref/
http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4%20-%20SMART%202013-0077%20-%20Smart%20Appliances%20-%20Final%20Study%20Report_v1.0.pdf
http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4%20-%20SMART%202013-0077%20-%20Smart%20Appliances%20-%20Final%20Study%20Report_v1.0.pdf

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 76 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table B.1: List of SAREF concepts

Concept Definition

Building
Object

A Building Object is an object in the building that can be controlled by devices, such as a door or a window
that can be automatically opened or closed by an actuator

Building
Space

According to FEIMSER, a Building Space in SAREF defines the physical spaces of the building. A building
space contains devices or building objects.

Command A Command is a directive that a device should support to perform a certain function. A command may act
upon a state, but does not necessarily act upon a state. For example, the ON command acts upon the
ON/OFF state, but the GET command does not act upon any state, since it gives a directive to retrieve a
certain value with no consequences on states.

Commodity A Commodity is a marketable item for which there is demand, but which is supplied without qualitative
differentiation across a market. SAREF refers to energy commodities such as electricity, gas, coal and oil.

Device A Device in the context of the Smart Appliances study is a tangible object designed to accomplish a
particular task in households, common public buildings or offices. In order to accomplish this task, the
device performs one or more functions. For example, a washing machine is designed to wash (task) and
to accomplish this task it performs the start and stop function.

Device
Category

A Device Category provides a way to classify devices according to a certain point of view, for example, the
point of view of the user of the device vs. the device's manufacturer, or the domain in which the device is
used (e.g., smart appliances vs. building domain vs. smart grid domain), etc.

Function A Function represents the particular use for which a Device is designed. A device can be designed to
perform more than one function.

Function
Category

A Function Category provides a way to classify functions according to a certain point of view, for example,
considering the specific application area for which a function can be used (e.g., light, temperature, motion,
heat, power, etc.), or the capability that a function can support (e.g., receive, reply, notify, etc.), and so
forth.

Profile A Profile caracterizes a device for the purpose to optimize the energy efficiency in the home or office in
which the device is located. The saref:Profile class allows to describe the energy (or power) production
and consumption of a certain device using the saref: hasProduction and saref:hasConsumption properties.
This production and consumption can be calculated over a time span (the saref:hasTime property) and,
eventually, associated to some costs (the saref:hasPrice property).

Property A Property is anything that can be sensed, measured or controlled in households, common public
buildings or offices.

Service A Service is a representation of a function to a network that makes the function discoverable, registerable,
remotely controllable by other devices in the network. A service can represent one or more functions. A
Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable,
remotely controllable by other devices in the network. A Service should specify the device that is offering
the service, the function(s) to be represented, and the (input and output) parameters 144 necessary to
operate the service.

State A State represents the state in which a device can be found, e.g. ON/OFF/STANDBY, or
ONLINE/OFFLINE, etc.

Task A Task represents the goal for which a device is designed (from a user perspective). For example, a
washing machine is designed for the task of cleaning

Unit of
Measure

The Unit of Measure is a standard for measurement of a quantity, such as a Property. For example, Power
is a property and Watt is a unit of power that represents a definite predetermined power: when 10 Watt is
mentioned, it actually means 10 times the definite predetermined power called "watt". Our definition is
based on the definition of unit of measure in the Ontology of units of Measure (OM). A list of some units of
measure that are relevant for the purpose of the Smart Appliances ontology is proposed here, but this list
can be extended.

B.1.2 Sub-class mapping relationship between SAREF and the Base
Ontology

This section provides an example on how the principle specified in Section 7.2 can be applied to the mapping between

the Base Ontology and SAREF.

Using two differnet ontologies (i.e., oneM2M_Base_Ontology.owl and saref.owl), a new ontology can be created using

the mapping principles, i.e. adding mapping relationships into the union of these two ontologies as a new mapped

ontology.

As a simple case, the following illustrates the subClass mappig between oneM2M:Device and saref:Device. The

following shows that saref:Device is a subclass of oneM2M:Device.

There are two popular OWL syntax: OWL/XML or RFD/XML.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 77 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

OWL/XML syntax for sub-class mapping is:

 <Import>http://www.onem2m.org/ontology/Base_Ontology</Import>

 <Import>http://ontology.tno.nl/saref</Import>

 <SubClassOf>

 <Class IRI="http://ontology.tno.nl/saref#Device"/>

 <Class IRI="http://www.onem2m.org/ontology/Base_Ontology#Device"/>

 </SubClassOf>

RFD/XML syntax for subclass mapping is:

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#Device">

 <rdfs:subClassOf rdf:resource="http://www.onem2m.org/ontology/Base_Ontology#Device"/>

 </rdf:Description>

Then, all instances of saref:Device are instances of oneM2M:Device.

Figure B.1 shows the class hierarchy of the new mapped ontology with mapping saref:Device as subClass of

oneM2M:Device.

Figure B.1: Class hierarchy of a mapped ontologywith mapping saref:Device as subClass of
oneM2M:Device

Considering both the definition and the relations of the classes in SAREF and the base ontology, Table B.2 gives the

possible subclass mapping between SAREF and the base ontology.

Table B.2: Subclass mapping between SAREF and the base ontology

Class in SAREF Mapping relationship Class in Base Ontology

saref:Device rdfs:subClassOf oneM2M:Device

saref:BulidingObject rdfs:subClassOf oneM2M:Thing

saref: BulidingSpace rdfs:subClassOf oneM2M:Thing

saref :Command rdfs:subClassOf oneM2M:Command

saref :Commodity rdfs:subClassOf oneM2M:Thing

saref :Function rdfs:subClassOf oneM2M:Funcationality

saref :Property rdfs:subClassOf oneM2M:InputDataPoint OR

oneM2M:OutputDataPoint

saref :Service rdfs:subClassOf oneM2M:Service

saref :UnitOfMeasure rdfs:subClassOf oneM2M:MetaData

saref :ActuatingFunction rdfs:subClassOf oneM2M:ControllingFuncationality

http://www.onem2m.org/ontology/Base_Ontology%3c/Import
http://ontology.tno.nl/saref%3c/Import
http://ontology.tno.nl/saref#Device
http://www.onem2m.org/ontology/Base_Ontology#Device
http://ontology.tno.nl/saref#Device
http://www.onem2m.org/ontology/Base_Ontology#Device

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 78 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

saref :MeteringFunction rdfs:subClassOf oneM2M:MesuringFuncationality

saref :SensingFunction rdfs:subClassOf oneM2M:MesuringFuncationality

saref :State rdfs:subClassOf oneM2M:InputDataPoint OR

oneM2M:OutputDataPoint

saref:Profile, rdfs:subClassOf oneM2M:Thing

saref:Task rdfs:subClassOf oneM2M:Thingproperty

saref:DeviceCategory rdfs:subClassOf oneM2M:Thingproperty

saref:FunctionCategory rdfs:subClassOf oneM2M:Aspect

B.1.3 Mapping SAREF to oneM2M resource structure

B.1.3.1 Introduction

Mapping an ontology to oneM2M describes how an instance of that ontology may be represented under oneM2M

resource structure. This clause proposes a recommended way to map SAREF to oneM2M..

B.1.3.2 Mapping rules

Mapping ontologies to the oneM2M resource structure may be provided through a list of mapping rules. The oneM2M

Base Ontology instantiation rules in clause 7.1 apply. Currently no additional mapping rules apply.

B.1.3.3 Example showing the uses of the semanticDescriptor resource and
instantiation in the oneM2M resource structure

This clause gives an example of how oneM2M resources and their semantic annotations based on the Smart Appliance

REFerence Ontology (SAREF) [i.2] can be used to describe a device representing a smart appliance.

It assumes that the Instantiation rules in clause 7 and the sub-class mapping relationship between SAREF and the Base

Ontology (clause B.1.2) apply.

The example taken from SAREF is a (simplified) washing machine:

 The washing machine has been manufactured by manufacturer XYZ.

 XYZ describes this type of washing machine as "Very cool Washing Machine"

 The model of the type of washing machine is XYZ_Cool

 The washing machine has an actuating function: WashingFunction which has three commands:

o ON_Command

o OFF_Command

o Toggle_Command

 The related service of the washing machine that represents that actuating function is of class:

SwitchOnService from SAREF. It has

o an InputDataPoint: BinaryInput (to expose command ON_Command and OFF_Command) and

o an Operation: ToggleBinary (to expose command Toggle_Command)

 The washing machine has also a function: MonitoringFunction that informs the user about the current state of

the washing machine.

 The state of the washing machine: WashingMachineStatus can take the values "WASHING" or "STOPPED"

or "ERROR".

 This state WashingMachineStatus is updated as an the OutputDataPoint of a service MonitorService of the

washing machine that monitors the washing machine’s behaviour.

 The washing machine is located at My_Bathroom

NOTE: "InputDataPoint", "OutputDataPoint" and "Operation" are not specified in SAREF, they are classes of the

oneM2M Base Ontology.

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 79 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

We will identify the specific washing machine by the URI: "WASH_XYZ_123". WASH_XYZ_123 is an instance of

class: XYZ_Cool which is contained in XYZ's ontology: http://www.XYZ.com/WashingMachines.

The ontology "http://www.XYZ.com/WashingMachines” that contains the model type "XYZ_Cool" is compliant to

SAREF, which is turn is compliant to the oneM2M Base Ontology (see clause B.1.2).

The following figure B.2 shows some sub-classing relationships between XYZ_Cool, SAREF and the oneM2M Base

Ontology.

saref:Washin
gMachine

rdfs: Literal

saref:has
Description

is-a
rdfs: Literal rdfs: Literal

saref:hasMa
nufacturer

saref:has
Model

saref:Start
StopFunct

ion

saref:Buil
dingSpace

saref:has
Function

saref:isLocatedIn

saref:
Service

saref:
offers

saref:
State

saref:hasState

http://www.XYZ.com
/WashingMachines#

XYZ_Cool

baseOntology:
Thing

is-a

saref:Actuat
ingFunction

is-a

baseOntology:
ControllingFun

ctionality

is-a

baseOntology:
ControllingFun

ctionality

is-a

baseOntology:
Functionality

is-a

saref:Device

is-a

baseOntology:
Device

is-a
baseOntology:

Service

is-a
baseOntology:

OutputData
Point

is-a

is-a

Figure B.2: Sub-classing relationships between XYZ_Cool, SAREF and the oneM2M Base Ontology

According to clause 7.1.1.2 the washing machine – as a sub-class of the oneM2M:Device class – shall be instantiated in

the data of the descriptor attribute of a resource of type <semanticDescriptor> that is a child resource of an <AE>.

For example:

 that <AE> resource could have resourceID = "00000001” and have a resourceName "My-WashingMachine”

 It’s CSE-relative address would be:

Non-Hierarchical:

– "00000001”

Hierarchical:

– "./My-WashingMachine”

http://www.xyz.com/WashingMachines
http://www.lg.com/WashingMachines

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 80 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

My-
WashingMachine

<AE>

<semanticDescriptor>

descriptor

Content of descriptor
attribute: see Table B.3

WashingMachine
Status

<container>

<semanticDescriptor>

descriptor

Content of descriptor
attribute: see Table B.4

BinaryInput

<container>

<semanticDescriptor>

descriptor

Content of descriptor
attribute: see Table B.5

MonitorService

<genericInterworkingService>

<semanticDescriptor>

descriptor

Content of descriptor
attribute: see Table B.6

SwitchOnService

<genericInterworkingService>

descriptor

<semanticDescriptor>

ToggleBinary

<genericInterworkingOperationInstance>

Content of descriptor
attribute: see Table B.7

<semanticDescriptor>

descriptor

Content of descriptor
attribute: see Table B.8

http://www.XYZ.com/Was
hingMachines#XYZ_Cool

ontologyRef

Figure B.3: Resource structure of smart washing machine <AE> and its child-resources

Figure B.3 shows the resource structure of a <AE> resource representing the smart washing machine. It consists of an

ontologyRef attribute, which contains the URI of the ontology concept of the smart washing machine,

e.g. "http://www.XYZ.com/WashingMachines#XYZ_Cool" (not shown in the figure: the ontologyRef attributes in the

semanticDescriptors of the child resources, e.g. http://www.XYZ.com/WashingMachines#WashingMachineStatus). The

ontology http://www.XYZ.com/WashingMachines needs to include - and creates sub-classing relationships with –

SAREF and the oneM2M Base Ontology.

The <AE> resource representing the smart washing machine contains as child-resources:

 a <semanticDescriptor> resource that contains the rdf description of the washing machine WASH_XYZ_123

in its descriptor attribute

 two <genericInterworkingService> child-resources and their <semanticDescriptor>s are used for modelling the

services SwitchOnService and MonitorService

 the SwitchOnService in turn has a child resource of type <genericInterworkingOperationInstance> which is

created whenever a ToggleBinary Operation is invoked.

 two <container> child-resources and their <semanticDescriptor>s are used for holding the values for

InputDataPoint BinaryInput and OutputDataPoint WashingMachineStatus for their respective services.

The RDF in the following tables shows the semantic annotation stored in the semanticDescriptor resources related to the

washing machine.

http://www.lg.com/WashingMachines

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 81 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table B.3: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of a SAREF washing machine <AE> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123">

 <rdf:type rdf:resource="http://www.XYZ.com/WashingMachines#XYZ_Cool"/>

 <saref:hasManufacturer>XYZ</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasState rdf:resource="WASH_XYZ_123*WashingMachineStatus"/>

 <saref:hasFunction rdf:resource="WASH_XYZ_123*WashingFunction"/>

 <saref:hasService rdf:resource="WASH_XYZ_123*SwitchOnService"/>

 <saref:hasService rdf:resource="WASH_XYZ_123*MonitorService"/>

 <saref:isLocatedIn rdf:resource="My_Bathroom"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/WashingMachineStatus/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction">

 <rdf:type rdf:resource="https://w3id.org/saref#ActuatingFunction"/>

 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*ON_Command"/>

 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*OFF_Command"/>

 <saref:hasCommand rdf:resource="WASH_XYZ_123*WashingFunction*Toggle_Command"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*ON_Command">

 <rdf:type rdf:resource="https://w3id.org/saref#OnCommand"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*OFF_Command">

 <rdf:type rdf:resource="https://w3id.org/saref#OffCommand"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*Toggle_Command">

 <rdf:type rdf:resource="https://w3id.org/saref#ToggleCommand"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService">

 <oneM2M: resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/SwitchOnService/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*MonitorService">

 <oneM2M: resourceDescriptorLink rdf:resource=
 "./My-WashingMachine/MonitorService/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="My_Bathroom">

 <rdf:type rdf:resource="https://w3id.org/saref#BuildingSpace"/>

 <oneM2M: resourceDescriptorLink rdf:resource=
 "//m2m.service.com/SomeIN-CSE/ResourceName_of_My_Bathroom/semanticDescriptor "/>

 </rdf:Description>

</rdf:RDF>

Table B.4: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the WashingMachineStatus <container> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">

 <rdf:type rdf:resource="https://w3id.org/saref#State"/>

 <oneM2M:oneM2MTargetURI rdf:resource=

 "./My-WashingMachine/WashingMachineStatus"/>

 <oneM2M:oneM2MAttribute>#latest</oneM2M:oneM2MAttribute>

 <oneM2M:hasDataType>xsd:string</oneM2M:hasDataType>

 <oneM2M:oneM2MMethod>RETRIEVE</oneM2M:oneM2MMethod>

 </rdf:Description>

</rdf:RDF>

file://///etsihq.org/FileServices/WorkSpace/SPA/Private/Standin/oneM2M/etsi_ts/Clean-up_118112_done/%22WASH_LG_123%22

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 82 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Table B.5: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the BinaryInput <container> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*BinaryInput">

 <rdf:type rdf:resource="https://w3id.org/saref#Property"/>

 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*ON_Command"/>

 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*OFF_Command"/>

 <oneM2M:oneM2MTargetURI rdf:resource=

 "./My-WashingMachine/BinaryInput"/>

 <oneM2M:oneM2MAttribute>#latest</oneM2M:oneM2MAttribute>

 <oneM2M:hasDataType> xsd:hexBinary</oneM2M:hasDataType>
 <oneM2M:oneM2MMethod> CREATE</oneM2M:oneM2MMethod>
 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*ON_Command">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*OFF_Command">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

Table B.6: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the MonitorService <genericInterworkingService> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*MonitorService">

 <rdf:type rdf:resource="https://w3id.org/saref#Service"/>

 <saref:represents rdf:resource="WASH_XYZ_123*MonitoringFunction"/>

 <oneM2M:hasOutputDataPoint rdf:resource="WASH_XYZ_123*WashingMachineStatus"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingMachineStatus">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/WashingMachineStatus/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*MonitoringFunction">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

Table B.7: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the SwitchOnService <genericInterworkingService> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService">

 <rdf:type rdf:resource="https://w3id.org/saref#SwitchOnService"/>

 <saref:represents rdf:resource="WASH_XYZ_123*WashingFunction"/>

 <oneM2M:hasOutDataPoint rdf:resource="WASH_XYZ_123*SwitchOnService*BinaryInput"/>

 <oneM2M:hasOperation rdf:resource="WASH_XYZ_123*SwitchOnService*ToggleBinary"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*BinaryInput">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/BinaryInput/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*ToggleBinary">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/SwitchOnService/ToggleBinary/semanticDescriptor"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction">

file://///etsihq.org/FileServices/WorkSpace/SPA/Private/Standin/oneM2M/etsi_ts/Clean-up_118112_done/%22WASH_LG_123%22
file://///etsihq.org/FileServices/WorkSpace/SPA/Private/Standin/oneM2M/etsi_ts/Clean-up_118112_done/%22WASH_LG_123%22
file://///etsihq.org/FileServices/WorkSpace/SPA/Private/Standin/oneM2M/etsi_ts/Clean-up_118112_done/%22WASH_LG_123%22

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 83 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

Table B.8: RDF annotation contained in the descriptor attribute of the <semanticDescriptor> resource
of the ToggleBinary <genericInterworkingOperationInstance> resource

<rdf:RDF

 <rdf:Description rdf:about="WASH_XYZ_123*SwitchOnService*ToggleBinary">

 <rdf:type

rdf:resource="http://www.onem2m.org/ontology/Base_Ontology/base_ontology#Operation"/>

 <oneM2M:exposesCommand rdf:resource="WASH_XYZ_123*WashingFunction*Toggle_Command"/>

 </rdf:Description>

 <rdf:Description rdf:about="WASH_XYZ_123*WashingFunction*Toggle_Command">

 <oneM2M:resourceDescriptorLink rdf:resource=

 "./My-WashingMachine/semanticDescriptor"/>

 </rdf:Description>

</rdf:RDF>

file://///etsihq.org/FileServices/WorkSpace/SPA/Private/Standin/oneM2M/etsi_ts/Clean-up_118112_done/%22WASH_LG_123%22

 © oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) Page 84 of 84
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

History

Publication history

V2.0.0 30-Aug-2016 Release 2 publication

	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Conventions
	5 General information on the oneM2M Base Ontology (informative)
	5.1 Motivation and intended use of the ontology
	5.1.1 Why using ontologies in oneM2M?
	5.1.1.1 Introduction to ontologies
	5.1.1.2 The purpose of the oneM2M Base Ontology
	5.1.1.2.0 Introduction
	5.1.1.2.1 Syntactic interoperability
	5.1.1.2.2 Semantic interoperability

	5.1.2 How are the Base Ontology and external ontologies used?
	5.1.2.1 Overview
	5.1.2.2 Introduction to usage of classes, properties and restrictions
	5.1.2.3 Methods for jointly using the Base Ontology and external ontologies

	5.2 Insights into the Base Ontology
	5.2.1 General design principles of the Base Ontology
	5.2.1.1 General Principle
	5.2.1.2 Essential Classes and Properties of the Base Ontology

	5.2.2 Use of ontologies for Generic interworking with Area Networks
	5.2.2.1 General Principle

	6 Description of Classes and Properties
	6.1 Classes
	6.1.1 Class: Thing
	6.1.2 Class: ThingProperty
	6.1.3 Class: Aspect
	6.1.4 Class: MetaData
	6.1.5 Class: Device
	6.1.6 Class: InterworkedDevice
	6.1.7 Class: AreaNetwork
	6.1.8 Class: Service
	6.1.9 Class: Functionality
	6.1.9.0 General description
	6.1.9.1 Class: ControllingFunctionality
	6.1.9.2 Class: MeasuringFunctionality

	6.1.10 Class: Operation
	6.1.10.0 General description
	6.1.10.1 Class: GET_InputDataPoint
	6.1.10.2 Class: SET_OutputDataPoint

	6.1.11 Class: Command
	6.1.12 Class: OperationInput
	6.1.13 Class: OperationOutput
	6.1.14 Class: OperationState
	6.1.15 Class: InputDataPoint
	6.1.16 Class: OutputDataPoint
	6.1.17 Class: Variable
	6.1.18 Class: SimpleTypeVariable

	6.2 Object Properties
	6.2.1 Void
	6.2.2 Void
	6.2.3 Object Property: consistsOf
	6.2.4 Object Property: describes
	6.2.5 Object Property: exposesCommand
	6.2.6 Object Property: exposesFunctionality
	6.2.7 Object Property: hasCommand
	6.2.8 Object Property: hasFunctionality
	6.2.9 Object Property: hasInput
	6.2.10 Object Property: hasInputDataPoint
	6.2.11 Object Property: hasMetaData
	6.2.12 Void
	6.2.13 Object Property: hasOperation
	6.2.14 Object Property: hasOperationState
	6.2.15 Void
	6.2.16 Object Property: hasOutput
	6.2.17 Object Property: hasOutputDataPoint
	6.2.18 Object Property: hasService
	6.2.19 Object Property: hasSubStructure
	6.2.20 Object Property: hasThingProperty
	6.2.21 Object Property: hasThingRelation
	6.2.22 Void
	6.2.23 Void
	6.2.24 Void
	6.2.25 Object Property: isPartOf
	6.2.26 Object Property: refersTo

	6.3 Data Properties
	6.3.1 Data Property: hasDataType
	6.3.2 Data Property: hasDataRestriction
	6.3.2.0 General description
	6.3.2.1 Data Property: hasDataRestriction_minInclusive
	6.3.2.2 Data Property: hasDataRestriction_maxInclusive
	6.3.2.3 Data Property: hasDataRestriction_minExclusive
	6.3.2.4 Data Property: hasDataRestriction_maxExclusive
	6.3.2.5 Data Property: hasDataRestriction_length
	6.3.2.6 Data Property: hasDataRestriction_minLength
	6.3.2.7 Data Property: hasDataRestriction_maxLength
	6.3.2.8 Data Property: hasDataRestriction_pattern
	6.3.2.9 Data Property: hasDataRestriction_langRange

	6.3.3 Data Property: hasValue
	6.3.4 Data Property: netTechnologyCommunicationProtocol
	6.3.5 Data Property: netTechnologyPhysicalStandard
	6.3.6 Data Property: netTechnologyProfile
	6.3.7 Data Property: oneM2MTargetURI
	6.3.8 Data Property: oneM2MAttribute
	6.3.9 Data Property: oneM2MMethod

	6.4 Annotation Properties
	6.4.1 Annotation Property: resourceDescriptorLink

	7 Instantiation of the Base Ontology and external ontologies to the oneM2M System
	7.1 Instantiation rules for the Base Ontology
	7.1.1 Instantiation of classes of the oneM2M Base Ontology and derived external ontologies in the oneM2M System:
	7.1.1.1 General on instantiating classes of the Base Ontology in the oneM2M System
	7.1.1.2 Instantiation of individual classes of the Base Ontology

	7.1.2 Instantiation of Object Properties
	7.1.3 Instantiation of Data Properties
	7.1.4 Instantiation of Annotation Properties

	7.2 Common mapping principles between the Base Ontology and external ontologies

	8 Functional specification of communication with the Generic interworking IPE
	8.1 Usage of oneM2M resources for IPE communication
	8.1.1 General design principles (informative)
	8.1.2 Parent-child and linking resource relationships

	8.2 Specification of the IPE for Generic interworking
	8.2.1 General functionality of a Generic interworking IPE
	8.2.2 Interworked Device discovery
	8.2.3 Handling of DataPoints by the IPE
	8.2.4 Handling of Operations by the IPE
	8.2.5 Removing Devices.

	8.3 Specification of the behavior of a communicating entity in message flows between IPE and the communicating entity
	8.3.1 Preconditions on the communicating entity
	8.3.2 Flow from the communicating entity to the IPE using InputDataPoints of a Service
	8.3.2.1 Flow from the communicating entity to the IPE using a <container> type InputDataPoint
	8.3.2.2 Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint

	8.3.3 Flow from the IPE to the communicating entity using OutputDataPoints of a Service
	8.3.4 Flow from the communicating entity to the IPE using Operations of a Service
	8.3.5 Flow from the IPE to the communicating entity using Operations of a Service

	9 FlexContainer specializations for Generic interworking
	9.1 Introduction
	9.2 Resource Type genericInterworkingService
	9.3 Resource Type genericInterworkingOperationInstance
	Annex A (normative): OWL representation of Base Ontology
	Annex B (informative): Mappings of selected external ontologies to the Base Ontology

	B.1 Mapping of SAREF
	B.1.1 Introduction to SAREF
	B.1.2 Sub-class mapping relationship between SAREF and the Base Ontology

	B.1.3 Mapping SAREF to oneM2M resource structure
	B.1.3.1 Introduction
	B.1.3.2 Mapping rules
	B.1.3.3 Example showing the uses of the semanticDescriptor resource and instantiation in the oneM2M resource structure

	History

